安全关键软件-测试结果的量化

Johan Sundell, K. Lundqvist, H. Forsberg
{"title":"安全关键软件-测试结果的量化","authors":"Johan Sundell, K. Lundqvist, H. Forsberg","doi":"10.1109/ISSREW51248.2020.00089","DOIUrl":null,"url":null,"abstract":"Safety-critical software systems have traditionally been found in few domains, e.g., aerospace, nuclear and medical. As technology advances and software capability increases, such systems can be found in more and more applications, e.g., selfdriving cars, autonomous trains. This development will dramatically increase the operational exposure of such systems. All safety-critical applications need to meet exceptionally stringent criteria in terms of dependability. Proving compliance is a challenge for the industry and there is a lack of accepted methods to determine the status of safety-critical software. The regulatory bodies often require a certain amount of testing to be performed but do not, for software systems, require evidence of a given failure rate. This paper addresses quantification of test results. It examines both theoretical and practical aspects. The contribution of this paper is an equation that estimates the remaining undetected faults in the software system after testing. The equation considers partial test coverage. The theoretical results are validated with results from a large industry study (commercial military software). Additionally, the industry results are used to analyze the concept of entropy also known as Shannon information, which is shown to describe the knowledge gained from a test effort.","PeriodicalId":202247,"journal":{"name":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safety-Critical Software - Quantification of Test Results\",\"authors\":\"Johan Sundell, K. Lundqvist, H. Forsberg\",\"doi\":\"10.1109/ISSREW51248.2020.00089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Safety-critical software systems have traditionally been found in few domains, e.g., aerospace, nuclear and medical. As technology advances and software capability increases, such systems can be found in more and more applications, e.g., selfdriving cars, autonomous trains. This development will dramatically increase the operational exposure of such systems. All safety-critical applications need to meet exceptionally stringent criteria in terms of dependability. Proving compliance is a challenge for the industry and there is a lack of accepted methods to determine the status of safety-critical software. The regulatory bodies often require a certain amount of testing to be performed but do not, for software systems, require evidence of a given failure rate. This paper addresses quantification of test results. It examines both theoretical and practical aspects. The contribution of this paper is an equation that estimates the remaining undetected faults in the software system after testing. The equation considers partial test coverage. The theoretical results are validated with results from a large industry study (commercial military software). Additionally, the industry results are used to analyze the concept of entropy also known as Shannon information, which is shown to describe the knowledge gained from a test effort.\",\"PeriodicalId\":202247,\"journal\":{\"name\":\"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW51248.2020.00089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW51248.2020.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

安全关键型软件系统传统上只存在于少数领域,例如航空航天、核和医疗。随着技术的进步和软件能力的提高,这种系统可以在越来越多的应用中找到,例如自动驾驶汽车,自动驾驶火车。这一发展将大大增加这类系统的作战风险。所有安全关键型应用程序都需要在可靠性方面满足非常严格的标准。证明合规性对行业来说是一个挑战,而且缺乏公认的方法来确定安全关键软件的状态。监管机构通常要求执行一定数量的测试,但对于软件系统,不要求给定故障率的证据。本文讨论了测试结果的量化。它考察了理论和实践两个方面。本文的贡献是一个方程,用于估计测试后软件系统中剩余未检测到的故障。这个等式考虑了部分测试覆盖率。理论结果与大型工业研究(商业军事软件)的结果进行了验证。此外,行业结果用于分析熵的概念,也称为香农信息,它用于描述从测试工作中获得的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safety-Critical Software - Quantification of Test Results
Safety-critical software systems have traditionally been found in few domains, e.g., aerospace, nuclear and medical. As technology advances and software capability increases, such systems can be found in more and more applications, e.g., selfdriving cars, autonomous trains. This development will dramatically increase the operational exposure of such systems. All safety-critical applications need to meet exceptionally stringent criteria in terms of dependability. Proving compliance is a challenge for the industry and there is a lack of accepted methods to determine the status of safety-critical software. The regulatory bodies often require a certain amount of testing to be performed but do not, for software systems, require evidence of a given failure rate. This paper addresses quantification of test results. It examines both theoretical and practical aspects. The contribution of this paper is an equation that estimates the remaining undetected faults in the software system after testing. The equation considers partial test coverage. The theoretical results are validated with results from a large industry study (commercial military software). Additionally, the industry results are used to analyze the concept of entropy also known as Shannon information, which is shown to describe the knowledge gained from a test effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BP-IDS: Using business process specification to leverage intrusion detection in critical infrastructures Techniques and Tools for Advanced Software Vulnerability Detection Challenges Faced with Application Performance Monitoring (APM) when Migrating to the Cloud AHPCap: A Framework for Automated Hardware Profiling and Capture of Mobile Application States Unit Lemmas for Detecting Requirement and Specification Flaws
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1