无距离标签传播:一种高效的gpu直连组件标签算法

Laurent Cabaret, L. Lacassagne, D. Etiemble
{"title":"无距离标签传播:一种高效的gpu直连组件标签算法","authors":"Laurent Cabaret, L. Lacassagne, D. Etiemble","doi":"10.1109/IPTA.2017.8310147","DOIUrl":null,"url":null,"abstract":"Modern computer architectures are mainly composed of multi-core processors and GPUs. Consequently, solely providing a sequential implementation of algorithms or comparing algorithm performance without regard to architecture is no longer pertinent. Today, algorithms have to address parallelism, multithreading and memory topology (private/shared memory, cache or scratchpad, …). Most Connected Component Labeling (CCL) algorithms are sequential, direct and optimized for processors. Few were designed specifically for GPU architectures and none were designed to be adapted to different architectures. The most efficient GPU implementations are iterative; in order to manage synchronizations between processing units, but the number of iterations depends on the image shape and density. This paper describes the DLP (Distanceless Label Propagation) algorithms, an adaptable set of algorithms usable both on GPU and multi-core architectures, and DLP-GPU, an efficient direct CCL algorithm for GPU based on DLP mechanisms.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Distanceless label propagation: An efficient direct connected component labeling algorithm for GPUs\",\"authors\":\"Laurent Cabaret, L. Lacassagne, D. Etiemble\",\"doi\":\"10.1109/IPTA.2017.8310147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern computer architectures are mainly composed of multi-core processors and GPUs. Consequently, solely providing a sequential implementation of algorithms or comparing algorithm performance without regard to architecture is no longer pertinent. Today, algorithms have to address parallelism, multithreading and memory topology (private/shared memory, cache or scratchpad, …). Most Connected Component Labeling (CCL) algorithms are sequential, direct and optimized for processors. Few were designed specifically for GPU architectures and none were designed to be adapted to different architectures. The most efficient GPU implementations are iterative; in order to manage synchronizations between processing units, but the number of iterations depends on the image shape and density. This paper describes the DLP (Distanceless Label Propagation) algorithms, an adaptable set of algorithms usable both on GPU and multi-core architectures, and DLP-GPU, an efficient direct CCL algorithm for GPU based on DLP mechanisms.\",\"PeriodicalId\":316356,\"journal\":{\"name\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2017.8310147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

现代计算机体系结构主要由多核处理器和图形处理器组成。因此,仅仅提供算法的顺序实现或不考虑体系结构而比较算法性能不再相关。今天,算法必须解决并行性、多线程和内存拓扑(私有/共享内存、缓存或刮擦板等)。大多数连接组件标记(CCL)算法是顺序的,直接的和优化的处理器。很少有专门为GPU架构设计的,没有一个是为了适应不同的架构而设计的。最有效的GPU实现是迭代的;为了管理处理单元之间的同步,但迭代的次数取决于图像的形状和密度。本文介绍了DLP (distance - eless Label Propagation)算法和基于DLP机制的高效GPU直接CCL算法DLP-GPU。DLP算法是一套可用于GPU和多核架构的自适应算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distanceless label propagation: An efficient direct connected component labeling algorithm for GPUs
Modern computer architectures are mainly composed of multi-core processors and GPUs. Consequently, solely providing a sequential implementation of algorithms or comparing algorithm performance without regard to architecture is no longer pertinent. Today, algorithms have to address parallelism, multithreading and memory topology (private/shared memory, cache or scratchpad, …). Most Connected Component Labeling (CCL) algorithms are sequential, direct and optimized for processors. Few were designed specifically for GPU architectures and none were designed to be adapted to different architectures. The most efficient GPU implementations are iterative; in order to manage synchronizations between processing units, but the number of iterations depends on the image shape and density. This paper describes the DLP (Distanceless Label Propagation) algorithms, an adaptable set of algorithms usable both on GPU and multi-core architectures, and DLP-GPU, an efficient direct CCL algorithm for GPU based on DLP mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated quantification of retinal vessel morphometry in the UK biobank cohort Deep learning for automatic sale receipt understanding Illumination-robust multispectral demosaicing Completed local structure patterns on three orthogonal planes for dynamic texture recognition Single object tracking using offline trained deep regression networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1