{"title":"SentNA @ ATE_ABSITA:使用带有词汇和基于词汇的特征的增强树对客户评论进行情感分析(短文)","authors":"F. Mele, A. Sorgente, Giuseppe Vettigli","doi":"10.4000/BOOKS.AACCADEMIA.6874","DOIUrl":null,"url":null,"abstract":"English. This paper describes our submission to the tasks on Sentiment Analysis of ATE ABSITA (Aspect Term Extraction and Aspect-Based Sentiment Analysis). In particular, we focused on Task 3 using an approach based on combining frequency of words with lexicon-based polarities and uses Boosted Trees to predict the sentiment score. This approach achieved a competitive error and, thanks to the interpretability of the building blocks, allows us to show the what elements are considered when making the prediction. We also joined Task 1 proposing a hybrid model that joins rule-based and machine learning methodologies in order to combine the advantages of both. The model proposed for Task 1 is only preliminary. Italiano. Questo articolo descrive la nostra sottomissione ai tasks sulla Sentiment Analysis ATE ABSITA (Aspect Term Extraction and Aspect-Based Sentiment Analysis). I nostri sforzi si sono concentrati sul Task 3 per il quale abbiamo adottato gli alberi di predizione (Boosted Trees) utilizzando come features di ingresso una combinazione basata sulla frequenza delle parole con la polarità derivate da un lessico. L’approccio raggiunge un errore competitivo e, grazie all’interpretabilità dei moduli intermedi, ci consente di analizzare in dettaglio gli elementi che caratterizzano maggiormente la fase di predizione. Una proposta è stata realizzata anche per il Task 1, dove abbiamo sviluppato un modello ibrido che Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). combina un approcio basato su regole con tecniche Machine Learning. Il modello sviluppato per il Task 1 è solo in fase pre-","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SentNA @ ATE_ABSITA: Sentiment Analysis of Customer Reviews Using Boosted Trees with Lexical and Lexicon-based Features (short paper)\",\"authors\":\"F. Mele, A. Sorgente, Giuseppe Vettigli\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.6874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"English. This paper describes our submission to the tasks on Sentiment Analysis of ATE ABSITA (Aspect Term Extraction and Aspect-Based Sentiment Analysis). In particular, we focused on Task 3 using an approach based on combining frequency of words with lexicon-based polarities and uses Boosted Trees to predict the sentiment score. This approach achieved a competitive error and, thanks to the interpretability of the building blocks, allows us to show the what elements are considered when making the prediction. We also joined Task 1 proposing a hybrid model that joins rule-based and machine learning methodologies in order to combine the advantages of both. The model proposed for Task 1 is only preliminary. Italiano. Questo articolo descrive la nostra sottomissione ai tasks sulla Sentiment Analysis ATE ABSITA (Aspect Term Extraction and Aspect-Based Sentiment Analysis). I nostri sforzi si sono concentrati sul Task 3 per il quale abbiamo adottato gli alberi di predizione (Boosted Trees) utilizzando come features di ingresso una combinazione basata sulla frequenza delle parole con la polarità derivate da un lessico. L’approccio raggiunge un errore competitivo e, grazie all’interpretabilità dei moduli intermedi, ci consente di analizzare in dettaglio gli elementi che caratterizzano maggiormente la fase di predizione. Una proposta è stata realizzata anche per il Task 1, dove abbiamo sviluppato un modello ibrido che Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). combina un approcio basato su regole con tecniche Machine Learning. Il modello sviluppato per il Task 1 è solo in fase pre-\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.6874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1