火星麦克默多地形图像分类的有效特征选择

C. Shang, D. Barnes, Q. Shen
{"title":"火星麦克默多地形图像分类的有效特征选择","authors":"C. Shang, D. Barnes, Q. Shen","doi":"10.1109/ISDA.2009.105","DOIUrl":null,"url":null,"abstract":"This paper presents a novel study of the classification of large-scale Mars McMurdo panorama image. Three dimensionality reduction techniques, based on fuzzy-rough sets, information gain ranking, and principal component analysis respectively, are each applied to this complicated image data set to support learning effective classifiers. The work allows the induction of low-dimensional feature subsets from feature patterns of a much higher dimensionality. To facilitate comparative investigations, two types of image classifier are employed here, namely multi-layer perceptrons and K-nearest neighbors. Experimental results demonstrate that feature selection helps to increase the classification efficiency by requiring considerably less features, while improving the classification accuracy by minimizing redundant and noisy features. This is of particular significance for on-board image classification in future Mars rover missions.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Effective Feature Selection for Mars McMurdo Terrain Image Classification\",\"authors\":\"C. Shang, D. Barnes, Q. Shen\",\"doi\":\"10.1109/ISDA.2009.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel study of the classification of large-scale Mars McMurdo panorama image. Three dimensionality reduction techniques, based on fuzzy-rough sets, information gain ranking, and principal component analysis respectively, are each applied to this complicated image data set to support learning effective classifiers. The work allows the induction of low-dimensional feature subsets from feature patterns of a much higher dimensionality. To facilitate comparative investigations, two types of image classifier are employed here, namely multi-layer perceptrons and K-nearest neighbors. Experimental results demonstrate that feature selection helps to increase the classification efficiency by requiring considerably less features, while improving the classification accuracy by minimizing redundant and noisy features. This is of particular significance for on-board image classification in future Mars rover missions.\",\"PeriodicalId\":330324,\"journal\":{\"name\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2009.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种新的大尺度火星麦克默多全景图像分类方法。将基于模糊粗糙集、信息增益排序和主成分分析的三种降维技术分别应用于该复杂图像数据集,以支持有效分类器的学习。这项工作允许从更高维度的特征模式中归纳出低维度的特征子集。为了便于比较研究,这里使用了两种类型的图像分类器,即多层感知器和k近邻。实验结果表明,特征选择通过显著减少特征要求来提高分类效率,同时通过最小化冗余特征和噪声特征来提高分类精度。这对未来火星探测器任务中的机载图像分类具有特别重要的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective Feature Selection for Mars McMurdo Terrain Image Classification
This paper presents a novel study of the classification of large-scale Mars McMurdo panorama image. Three dimensionality reduction techniques, based on fuzzy-rough sets, information gain ranking, and principal component analysis respectively, are each applied to this complicated image data set to support learning effective classifiers. The work allows the induction of low-dimensional feature subsets from feature patterns of a much higher dimensionality. To facilitate comparative investigations, two types of image classifier are employed here, namely multi-layer perceptrons and K-nearest neighbors. Experimental results demonstrate that feature selection helps to increase the classification efficiency by requiring considerably less features, while improving the classification accuracy by minimizing redundant and noisy features. This is of particular significance for on-board image classification in future Mars rover missions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EACImpute: An Evolutionary Algorithm for Clustering-Based Imputation An FPGA Based Arrhythmia Recognition System for Wearable Applications Knowledge Discovery Approaches for Early Detection of Decompensation Conditions in Heart Failure Patients Evaluating an Intelligent Business System with a Fuzzy Multi-criteria Approach Time Analysis of Forum Evolution as Support Tool for E-Moderating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1