{"title":"了解相机配置和环境条件如何影响基于外观的定位","authors":"Aayush Bansal, H. Badino, Daniel F. Huber","doi":"10.1109/IVS.2014.6856605","DOIUrl":null,"url":null,"abstract":"Localization is a central problem for intelligent vehicles. Visual localization can supplement or replace GPS-based localization approaches in situations where GPS is unavailable or inaccurate. Although visual localization has been demonstrated in a variety of algorithms and systems, the problem of how to best configure such a system remains largely an open question. Design choices, such as “where should the camera be placed?” and “how should it be oriented?” can have substantial effect on the cost and robustness of a fielded intelligent vehicle. This paper analyzes how different sensor configuration parameters and environmental conditions affect visual localization performance with the goal of understanding what causes certain configurations to perform better than others and providing general principles for configuring systems for visual localization. We ground the investigation using extensive field testing of a visual localization algorithm, and the data sets used for the analysis are made available for comparative evaluation.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Understanding how camera configuration and environmental conditions affect appearance-based localization\",\"authors\":\"Aayush Bansal, H. Badino, Daniel F. Huber\",\"doi\":\"10.1109/IVS.2014.6856605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localization is a central problem for intelligent vehicles. Visual localization can supplement or replace GPS-based localization approaches in situations where GPS is unavailable or inaccurate. Although visual localization has been demonstrated in a variety of algorithms and systems, the problem of how to best configure such a system remains largely an open question. Design choices, such as “where should the camera be placed?” and “how should it be oriented?” can have substantial effect on the cost and robustness of a fielded intelligent vehicle. This paper analyzes how different sensor configuration parameters and environmental conditions affect visual localization performance with the goal of understanding what causes certain configurations to perform better than others and providing general principles for configuring systems for visual localization. We ground the investigation using extensive field testing of a visual localization algorithm, and the data sets used for the analysis are made available for comparative evaluation.\",\"PeriodicalId\":254500,\"journal\":{\"name\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2014.6856605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding how camera configuration and environmental conditions affect appearance-based localization
Localization is a central problem for intelligent vehicles. Visual localization can supplement or replace GPS-based localization approaches in situations where GPS is unavailable or inaccurate. Although visual localization has been demonstrated in a variety of algorithms and systems, the problem of how to best configure such a system remains largely an open question. Design choices, such as “where should the camera be placed?” and “how should it be oriented?” can have substantial effect on the cost and robustness of a fielded intelligent vehicle. This paper analyzes how different sensor configuration parameters and environmental conditions affect visual localization performance with the goal of understanding what causes certain configurations to perform better than others and providing general principles for configuring systems for visual localization. We ground the investigation using extensive field testing of a visual localization algorithm, and the data sets used for the analysis are made available for comparative evaluation.