基于最大似然法的分数间隔信号重建

B. Porat, B. Friedlander
{"title":"基于最大似然法的分数间隔信号重建","authors":"B. Porat, B. Friedlander","doi":"10.1109/HOST.1997.613514","DOIUrl":null,"url":null,"abstract":"This paper proposes a scheme for maximum-likelihood-based signal reconstruction. The scheme extends a previous work by Yellin and Friedlander to the case of fractionally-spaced data. The use of fractionally-spaced data obviates the need for timing-phase recovery. Batch and adaptive algorithms are derived and illustrated by examples. The algorithms are useful for equalization of digital communication channels.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fractionally-spaced signal reconstruction based on maximum likelihood\",\"authors\":\"B. Porat, B. Friedlander\",\"doi\":\"10.1109/HOST.1997.613514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a scheme for maximum-likelihood-based signal reconstruction. The scheme extends a previous work by Yellin and Friedlander to the case of fractionally-spaced data. The use of fractionally-spaced data obviates the need for timing-phase recovery. Batch and adaptive algorithms are derived and illustrated by examples. The algorithms are useful for equalization of digital communication channels.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于最大似然的信号重构方案。该方案将Yellin和Friedlander先前的工作扩展到分数间隔数据的情况。分数间隔数据的使用消除了定时相位恢复的需要。推导了批处理算法和自适应算法,并用实例进行了说明。该算法可用于数字通信信道的均衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fractionally-spaced signal reconstruction based on maximum likelihood
This paper proposes a scheme for maximum-likelihood-based signal reconstruction. The scheme extends a previous work by Yellin and Friedlander to the case of fractionally-spaced data. The use of fractionally-spaced data obviates the need for timing-phase recovery. Batch and adaptive algorithms are derived and illustrated by examples. The algorithms are useful for equalization of digital communication channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narrow band source separation in wide band context applications to array signal processing Higher-order statistics for tissue characterization from ultrasound images An iterative mixed norm image restoration algorithm Comparison between asymmetric generalized Gaussian (AGG) and symmetric-/spl alpha/-stable (S/spl alpha/S) noise models for signal estimation in non Gaussian environments Linear algebraic approaches for (almost) periodic moving average system identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1