基于简单有效信道估计器的大规模MU-MIMO性能分析

F. A. P. Figueiredo, C. Dias, E. Lima, G. Fraidenraich
{"title":"基于简单有效信道估计器的大规模MU-MIMO性能分析","authors":"F. A. P. Figueiredo, C. Dias, E. Lima, G. Fraidenraich","doi":"10.1109/LATINCOM48065.2019.8937874","DOIUrl":null,"url":null,"abstract":"Accurate channel estimation is of utmost importance for massive MIMO systems that allow providing significant improvements in spectral and energy efficiency. In this work, we investigate the spectral efficiency performance and present a channel estimator for multi-cell massive MIMO systems subjected to pilot-contamination. The proposed channel estimator performs well under moderate to aggressive pilot contamination scenarios without prior knowledge of the inter-cell large-scale channel coefficients and noise power. The estimator approximates the performance of a linear Minimum Mean Square Error (MMSE) as the number of antennas increases. Following, we derive a lower bound closed-form spectral efficiency of the Maximum Ratio Combining (MRC) detector in the proposed channel estimator. The simulation results highlight that the proposed estimator performance approaches the linear minimum mean square error (LMMSE) channel estimator asymptotically.","PeriodicalId":120312,"journal":{"name":"2019 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Analysis of Large-Scale MU-MIMO with a Simple and Effective Channel Estimator\",\"authors\":\"F. A. P. Figueiredo, C. Dias, E. Lima, G. Fraidenraich\",\"doi\":\"10.1109/LATINCOM48065.2019.8937874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate channel estimation is of utmost importance for massive MIMO systems that allow providing significant improvements in spectral and energy efficiency. In this work, we investigate the spectral efficiency performance and present a channel estimator for multi-cell massive MIMO systems subjected to pilot-contamination. The proposed channel estimator performs well under moderate to aggressive pilot contamination scenarios without prior knowledge of the inter-cell large-scale channel coefficients and noise power. The estimator approximates the performance of a linear Minimum Mean Square Error (MMSE) as the number of antennas increases. Following, we derive a lower bound closed-form spectral efficiency of the Maximum Ratio Combining (MRC) detector in the proposed channel estimator. The simulation results highlight that the proposed estimator performance approaches the linear minimum mean square error (LMMSE) channel estimator asymptotically.\",\"PeriodicalId\":120312,\"journal\":{\"name\":\"2019 IEEE Latin-American Conference on Communications (LATINCOM)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Latin-American Conference on Communications (LATINCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LATINCOM48065.2019.8937874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM48065.2019.8937874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

准确的信道估计对于大规模MIMO系统至关重要,因为它可以显著提高频谱和能量效率。在这项工作中,我们研究了频谱效率性能,并提出了一个受导频污染的多小区大规模MIMO系统的信道估计器。所提出的信道估计器在不需要预先知道单元间大尺度信道系数和噪声功率的情况下,在中度到严重的导频污染情况下表现良好。随着天线数量的增加,估计器估计线性最小均方误差(MMSE)的性能。接下来,我们推导了该信道估计器中最大比组合(MRC)检测器的下界闭式频谱效率。仿真结果表明,该估计器的性能逐渐接近线性最小均方误差信道估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Analysis of Large-Scale MU-MIMO with a Simple and Effective Channel Estimator
Accurate channel estimation is of utmost importance for massive MIMO systems that allow providing significant improvements in spectral and energy efficiency. In this work, we investigate the spectral efficiency performance and present a channel estimator for multi-cell massive MIMO systems subjected to pilot-contamination. The proposed channel estimator performs well under moderate to aggressive pilot contamination scenarios without prior knowledge of the inter-cell large-scale channel coefficients and noise power. The estimator approximates the performance of a linear Minimum Mean Square Error (MMSE) as the number of antennas increases. Following, we derive a lower bound closed-form spectral efficiency of the Maximum Ratio Combining (MRC) detector in the proposed channel estimator. The simulation results highlight that the proposed estimator performance approaches the linear minimum mean square error (LMMSE) channel estimator asymptotically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Extensible Access Control Architecture for Software Defined Networks based on X.812 Analysis of performance of fusion rules for cooperative spectrum sensing A Fronthaul Signal Compression Method Based on Trellis Coded Quantization Novel hybrid precoder based on SVD for downlink mmWave massive MU-MIMO systems A Simulation of an IoT-based Solution Using LoRaWAN for Remote Stations of Peruvian Navy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1