Pramod Subramanyan, Virendra Singh, K. Saluja, E. Larsson
{"title":"多路容错芯片多处理器的自适应执行辅助","authors":"Pramod Subramanyan, Virendra Singh, K. Saluja, E. Larsson","doi":"10.1109/ICCD.2011.6081432","DOIUrl":null,"url":null,"abstract":"Relentless scaling of CMOS fabrication technology has made contemporary integrated circuits increasingly susceptible to transient faults, wearout-related permanent faults, intermittent faults and process variations. Therefore, mechanisms to mitigate the effects of decreased reliability are expected to become essential components of future general-purpose microprocessors.","PeriodicalId":354015,"journal":{"name":"2011 IEEE 29th International Conference on Computer Design (ICCD)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive execution assistance for multiplexed fault-tolerant chip multiprocessors\",\"authors\":\"Pramod Subramanyan, Virendra Singh, K. Saluja, E. Larsson\",\"doi\":\"10.1109/ICCD.2011.6081432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relentless scaling of CMOS fabrication technology has made contemporary integrated circuits increasingly susceptible to transient faults, wearout-related permanent faults, intermittent faults and process variations. Therefore, mechanisms to mitigate the effects of decreased reliability are expected to become essential components of future general-purpose microprocessors.\",\"PeriodicalId\":354015,\"journal\":{\"name\":\"2011 IEEE 29th International Conference on Computer Design (ICCD)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 29th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2011.6081432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 29th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2011.6081432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive execution assistance for multiplexed fault-tolerant chip multiprocessors
Relentless scaling of CMOS fabrication technology has made contemporary integrated circuits increasingly susceptible to transient faults, wearout-related permanent faults, intermittent faults and process variations. Therefore, mechanisms to mitigate the effects of decreased reliability are expected to become essential components of future general-purpose microprocessors.