基于贝叶斯压缩感知的连续聚类线性阵列

E. Bekele, G. Oliveri, A. Massa
{"title":"基于贝叶斯压缩感知的连续聚类线性阵列","authors":"E. Bekele, G. Oliveri, A. Massa","doi":"10.1109/CAMA.2014.7003311","DOIUrl":null,"url":null,"abstract":"Bayesian Compressive Sensing (BCS) is applied for the synthesis of contiguously clustered linear arrays. The standard sub-array problem is formulated as a probabilistic BCS synthesis problem and the Relevance Vector Machine (RVM) is used to obtain a sparse contiguous non-overlapping subarray configuration which has maximal far-field pattern match with a given reference pattern. Selected numerical experiment results are reported to validate the synthesis technique.","PeriodicalId":409536,"journal":{"name":"2014 IEEE Conference on Antenna Measurements & Applications (CAMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contiguously clustered linear arrays through Bayesian compressive sensing\",\"authors\":\"E. Bekele, G. Oliveri, A. Massa\",\"doi\":\"10.1109/CAMA.2014.7003311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian Compressive Sensing (BCS) is applied for the synthesis of contiguously clustered linear arrays. The standard sub-array problem is formulated as a probabilistic BCS synthesis problem and the Relevance Vector Machine (RVM) is used to obtain a sparse contiguous non-overlapping subarray configuration which has maximal far-field pattern match with a given reference pattern. Selected numerical experiment results are reported to validate the synthesis technique.\",\"PeriodicalId\":409536,\"journal\":{\"name\":\"2014 IEEE Conference on Antenna Measurements & Applications (CAMA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Antenna Measurements & Applications (CAMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMA.2014.7003311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Antenna Measurements & Applications (CAMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMA.2014.7003311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将贝叶斯压缩感知(BCS)应用于连续聚类线性阵列的合成。将标准子阵问题表述为一个概率BCS综合问题,利用相关向量机(RVM)获得与给定参考方向图远场匹配最大的稀疏连续非重叠子阵构型。通过数值实验对合成方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contiguously clustered linear arrays through Bayesian compressive sensing
Bayesian Compressive Sensing (BCS) is applied for the synthesis of contiguously clustered linear arrays. The standard sub-array problem is formulated as a probabilistic BCS synthesis problem and the Relevance Vector Machine (RVM) is used to obtain a sparse contiguous non-overlapping subarray configuration which has maximal far-field pattern match with a given reference pattern. Selected numerical experiment results are reported to validate the synthesis technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of the uncertainties on the scattering problems Quasi-modal analysis of segmented waveguides Imaging of a scaled comet model from lab experiments Analysis of surrounded antennas: From DG-FDTD to DG-FDTD/IPO Compact antenna test range implementation in IETR millimetre wave antenna test facility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1