求解线性系统的更快量子启发算法

Changpeng Shao, A. Montanaro
{"title":"求解线性系统的更快量子启发算法","authors":"Changpeng Shao, A. Montanaro","doi":"10.1145/3520141","DOIUrl":null,"url":null,"abstract":"We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system \\( A{\\bf x}= {\\bf b} \\) , we show that there is a classical algorithm that outputs a data structure for \\( {\\bf x} \\) allowing sampling and querying to the entries, where \\( {\\bf x} \\) is such that \\( \\Vert {\\bf x}- A^{+}{\\bf b}\\Vert \\le \\epsilon \\Vert A^{+}{\\bf b}\\Vert \\) . This output can be viewed as a classical analogue to the output of quantum linear solvers. The complexity of our algorithm is \\( \\widetilde{O}(\\kappa _F^6 \\kappa ^2/\\epsilon ^2) \\) , where \\( \\kappa _F = \\Vert A\\Vert _F\\Vert A^{+}\\Vert \\) and \\( \\kappa = \\Vert A\\Vert \\Vert A^{+}\\Vert \\) . This improves the previous best algorithm [Gilyén, Song and Tang, arXiv:2009.07268] of complexity \\( \\widetilde{O}(\\kappa _F^6 \\kappa ^6/\\epsilon ^4) \\) . Our algorithm is based on the randomized Kaczmarz method, which is a particular case of stochastic gradient descent. We also find that when A is row sparse, this method already returns an approximate solution \\( {\\bf x} \\) in time \\( \\widetilde{O}(\\kappa _F^2) \\) , while the best quantum algorithm known returns \\( | {\\bf x} \\rangle \\) in time \\( \\widetilde{O}(\\kappa _F) \\) when A is stored in the QRAM data structure. As a result, assuming access to QRAM and if A is row sparse, the speedup based on current quantum algorithms is quadratic.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Faster Quantum-inspired Algorithms for Solving Linear Systems\",\"authors\":\"Changpeng Shao, A. Montanaro\",\"doi\":\"10.1145/3520141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system \\\\( A{\\\\bf x}= {\\\\bf b} \\\\) , we show that there is a classical algorithm that outputs a data structure for \\\\( {\\\\bf x} \\\\) allowing sampling and querying to the entries, where \\\\( {\\\\bf x} \\\\) is such that \\\\( \\\\Vert {\\\\bf x}- A^{+}{\\\\bf b}\\\\Vert \\\\le \\\\epsilon \\\\Vert A^{+}{\\\\bf b}\\\\Vert \\\\) . This output can be viewed as a classical analogue to the output of quantum linear solvers. The complexity of our algorithm is \\\\( \\\\widetilde{O}(\\\\kappa _F^6 \\\\kappa ^2/\\\\epsilon ^2) \\\\) , where \\\\( \\\\kappa _F = \\\\Vert A\\\\Vert _F\\\\Vert A^{+}\\\\Vert \\\\) and \\\\( \\\\kappa = \\\\Vert A\\\\Vert \\\\Vert A^{+}\\\\Vert \\\\) . This improves the previous best algorithm [Gilyén, Song and Tang, arXiv:2009.07268] of complexity \\\\( \\\\widetilde{O}(\\\\kappa _F^6 \\\\kappa ^6/\\\\epsilon ^4) \\\\) . Our algorithm is based on the randomized Kaczmarz method, which is a particular case of stochastic gradient descent. We also find that when A is row sparse, this method already returns an approximate solution \\\\( {\\\\bf x} \\\\) in time \\\\( \\\\widetilde{O}(\\\\kappa _F^2) \\\\) , while the best quantum algorithm known returns \\\\( | {\\\\bf x} \\\\rangle \\\\) in time \\\\( \\\\widetilde{O}(\\\\kappa _F) \\\\) when A is stored in the QRAM data structure. As a result, assuming access to QRAM and if A is row sparse, the speedup based on current quantum algorithms is quadratic.\",\"PeriodicalId\":365166,\"journal\":{\"name\":\"ACM Transactions on Quantum Computing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Quantum Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3520141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3520141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们建立了一种改进的经典算法来求解线性系统的模型,类似于量子线性求解器所使用的QRAM。准确地说,对于线性系统\( A{\bf x}= {\bf b} \),我们展示了一个经典算法,它为\( {\bf x} \)输出一个数据结构,允许对条目进行采样和查询,其中\( {\bf x} \)使得\( \Vert {\bf x}- A^{+}{\bf b}\Vert \le \epsilon \Vert A^{+}{\bf b}\Vert \)。这种输出可以看作是量子线性解算器输出的经典模拟。我们算法的复杂度为\( \widetilde{O}(\kappa _F^6 \kappa ^2/\epsilon ^2) \),其中\( \kappa _F = \Vert A\Vert _F\Vert A^{+}\Vert \)和\( \kappa = \Vert A\Vert \Vert A^{+}\Vert \)。这提高了之前复杂度\( \widetilde{O}(\kappa _F^6 \kappa ^6/\epsilon ^4) \)的最佳算法[gily, Song and Tang, arXiv:2009.07268]。我们的算法基于随机Kaczmarz方法,这是随机梯度下降的一种特殊情况。我们还发现,当A是行稀疏时,该方法已经在\( \widetilde{O}(\kappa _F^2) \)时间内返回近似解\( {\bf x} \),而当A存储在QRAM数据结构中时,已知的最佳量子算法在\( \widetilde{O}(\kappa _F) \)时间内返回\( | {\bf x} \rangle \)。因此,假设访问QRAM并且如果a是行稀疏的,基于当前量子算法的加速是二次的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Faster Quantum-inspired Algorithms for Solving Linear Systems
We establish an improved classical algorithm for solving linear systems in a model analogous to the QRAM that is used by quantum linear solvers. Precisely, for the linear system \( A{\bf x}= {\bf b} \) , we show that there is a classical algorithm that outputs a data structure for \( {\bf x} \) allowing sampling and querying to the entries, where \( {\bf x} \) is such that \( \Vert {\bf x}- A^{+}{\bf b}\Vert \le \epsilon \Vert A^{+}{\bf b}\Vert \) . This output can be viewed as a classical analogue to the output of quantum linear solvers. The complexity of our algorithm is \( \widetilde{O}(\kappa _F^6 \kappa ^2/\epsilon ^2) \) , where \( \kappa _F = \Vert A\Vert _F\Vert A^{+}\Vert \) and \( \kappa = \Vert A\Vert \Vert A^{+}\Vert \) . This improves the previous best algorithm [Gilyén, Song and Tang, arXiv:2009.07268] of complexity \( \widetilde{O}(\kappa _F^6 \kappa ^6/\epsilon ^4) \) . Our algorithm is based on the randomized Kaczmarz method, which is a particular case of stochastic gradient descent. We also find that when A is row sparse, this method already returns an approximate solution \( {\bf x} \) in time \( \widetilde{O}(\kappa _F^2) \) , while the best quantum algorithm known returns \( | {\bf x} \rangle \) in time \( \widetilde{O}(\kappa _F) \) when A is stored in the QRAM data structure. As a result, assuming access to QRAM and if A is row sparse, the speedup based on current quantum algorithms is quadratic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting the Mapping of Quantum Circuits: Entering the Multi-Core Era An optimal linear-combination-of-unitaries-based quantum linear system solver Efficient Syndrome Decoder for Heavy Hexagonal QECC via Machine Learning Improving the Efficiency of Quantum Circuits for Information Set Decoding Quantum Bilinear Interpolation Algorithms Based on Geometric Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1