基于DNA和双目标遗传算法的耦合映射格图像加密方法

Shelza Suri, R. Vijay
{"title":"基于DNA和双目标遗传算法的耦合映射格图像加密方法","authors":"Shelza Suri, R. Vijay","doi":"10.1504/ijics.2020.10026778","DOIUrl":null,"url":null,"abstract":"The paper presents a coupled map lattice (CML) and deoxyribonucleic acid (DNA)-based image encryption algorithm that uses genetic algorithm (GA) to get the optimised results. The algorithm uses the chaotic method CML and DNA to create an initial population of DNA masks in its first stage. The GA is applied in the second stage to obtain the best mask for encrypting the given plain image. The paper also discusses the use of two more chaotic functions, i.e., logistic map (LM) and transformed logistic map (TLM) with DNA-GA-based hybrid combination. The paper evaluates and compares the performance of the proposed CML-DNA-GA algorithm with LM-DNA-GA, TLM-DNA-GA hybrid approaches. The results show that the proposed approach performs better than the other two. It also discusses the impact of using a bi-objective GA optimisation for image encryption and applies the same to the all three discussed techniques. The results show that bi-objective optimisation of the proposed algorithm gives balanced results with respect to the selected fitness functions.","PeriodicalId":164016,"journal":{"name":"Int. J. Inf. Comput. Secur.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A coupled map lattice-based image encryption approach using DNA and bi-objective genetic algorithm\",\"authors\":\"Shelza Suri, R. Vijay\",\"doi\":\"10.1504/ijics.2020.10026778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a coupled map lattice (CML) and deoxyribonucleic acid (DNA)-based image encryption algorithm that uses genetic algorithm (GA) to get the optimised results. The algorithm uses the chaotic method CML and DNA to create an initial population of DNA masks in its first stage. The GA is applied in the second stage to obtain the best mask for encrypting the given plain image. The paper also discusses the use of two more chaotic functions, i.e., logistic map (LM) and transformed logistic map (TLM) with DNA-GA-based hybrid combination. The paper evaluates and compares the performance of the proposed CML-DNA-GA algorithm with LM-DNA-GA, TLM-DNA-GA hybrid approaches. The results show that the proposed approach performs better than the other two. It also discusses the impact of using a bi-objective GA optimisation for image encryption and applies the same to the all three discussed techniques. The results show that bi-objective optimisation of the proposed algorithm gives balanced results with respect to the selected fitness functions.\",\"PeriodicalId\":164016,\"journal\":{\"name\":\"Int. J. Inf. Comput. Secur.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Comput. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijics.2020.10026778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijics.2020.10026778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于映射格(CML)和脱氧核糖核酸(DNA)的耦合图像加密算法,该算法使用遗传算法(GA)来获得优化结果。该算法在第一阶段使用CML和DNA的混沌方法创建DNA掩模的初始种群。第二阶段采用遗传算法对给定的平面图像进行加密,得到最佳掩码。本文还讨论了另外两个混沌函数的使用,即logistic映射(LM)和转换logistic映射(TLM)与dna - ga混合组合。本文对CML-DNA-GA算法与LM-DNA-GA、TLM-DNA-GA混合算法的性能进行了评价和比较。结果表明,该方法的性能优于其他两种方法。它还讨论了使用双目标遗传算法优化图像加密的影响,并将其应用于所有三种讨论的技术。结果表明,所提算法的双目标优化相对于所选的适应度函数给出了平衡的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A coupled map lattice-based image encryption approach using DNA and bi-objective genetic algorithm
The paper presents a coupled map lattice (CML) and deoxyribonucleic acid (DNA)-based image encryption algorithm that uses genetic algorithm (GA) to get the optimised results. The algorithm uses the chaotic method CML and DNA to create an initial population of DNA masks in its first stage. The GA is applied in the second stage to obtain the best mask for encrypting the given plain image. The paper also discusses the use of two more chaotic functions, i.e., logistic map (LM) and transformed logistic map (TLM) with DNA-GA-based hybrid combination. The paper evaluates and compares the performance of the proposed CML-DNA-GA algorithm with LM-DNA-GA, TLM-DNA-GA hybrid approaches. The results show that the proposed approach performs better than the other two. It also discusses the impact of using a bi-objective GA optimisation for image encryption and applies the same to the all three discussed techniques. The results show that bi-objective optimisation of the proposed algorithm gives balanced results with respect to the selected fitness functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vulnerability discovery modelling: a general framework Modelling and visualising SSH brute force attack behaviours through a hybrid learning framework Empirical risk assessment of attack graphs using time to compromise framework Fault-based testing for discovering SQL injection vulnerabilities in web applications Leveraging Intel SGX to enable trusted and privacy preserving membership service in distributed ledgers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1