分析扩展属性图与Apache Flink

Martin Junghanns, André Petermann, Niklas Teichmann, Kevin Gómez, E. Rahm
{"title":"分析扩展属性图与Apache Flink","authors":"Martin Junghanns, André Petermann, Niklas Teichmann, Kevin Gómez, E. Rahm","doi":"10.1145/2980523.2980527","DOIUrl":null,"url":null,"abstract":"Graphs are an intuitive way to model complex relationships between real-world data objects. Thus, graph analytics plays an important role in research and industry. As graphs often reflect heterogeneous domain data, their representation requires an expressive data model including the abstraction of graph collections, for example, to analyze communities inside a social network. Further on, answering complex analytical questions about such graphs entails combining multiple analytical operations. To satisfy these requirements, we propose the Extended Property Graph Model, which is semantically rich, schema-free and supports multiple distinct graphs. Based on this representation, it provides declarative and combinable operators to analyze both single graphs and graph collections. Our current implementation is based on the distributed dataflow framework Apache Flink. We present the results of a first experimental study showing the scalability of our implementation on social network data with up to 11 billion edges.","PeriodicalId":246127,"journal":{"name":"Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Analyzing extended property graphs with Apache Flink\",\"authors\":\"Martin Junghanns, André Petermann, Niklas Teichmann, Kevin Gómez, E. Rahm\",\"doi\":\"10.1145/2980523.2980527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphs are an intuitive way to model complex relationships between real-world data objects. Thus, graph analytics plays an important role in research and industry. As graphs often reflect heterogeneous domain data, their representation requires an expressive data model including the abstraction of graph collections, for example, to analyze communities inside a social network. Further on, answering complex analytical questions about such graphs entails combining multiple analytical operations. To satisfy these requirements, we propose the Extended Property Graph Model, which is semantically rich, schema-free and supports multiple distinct graphs. Based on this representation, it provides declarative and combinable operators to analyze both single graphs and graph collections. Our current implementation is based on the distributed dataflow framework Apache Flink. We present the results of a first experimental study showing the scalability of our implementation on social network data with up to 11 billion edges.\",\"PeriodicalId\":246127,\"journal\":{\"name\":\"Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2980523.2980527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2980523.2980527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

图是对现实世界数据对象之间的复杂关系进行建模的一种直观方式。因此,图形分析在研究和工业中扮演着重要的角色。由于图形经常反映异构领域数据,因此它们的表示需要一个具有表现力的数据模型,包括图形集合的抽象,例如,用于分析社会网络中的社区。进一步说,回答关于这种图的复杂分析问题需要结合多种分析操作。为了满足这些需求,我们提出了语义丰富、无模式、支持多个不同图的扩展属性图模型。基于这种表示,它提供了声明性和可组合的操作符来分析单个图和图集合。我们目前的实现是基于分布式数据流框架Apache Flink。我们展示了第一个实验研究的结果,显示了我们在多达110亿个边的社交网络数据上实现的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing extended property graphs with Apache Flink
Graphs are an intuitive way to model complex relationships between real-world data objects. Thus, graph analytics plays an important role in research and industry. As graphs often reflect heterogeneous domain data, their representation requires an expressive data model including the abstraction of graph collections, for example, to analyze communities inside a social network. Further on, answering complex analytical questions about such graphs entails combining multiple analytical operations. To satisfy these requirements, we propose the Extended Property Graph Model, which is semantically rich, schema-free and supports multiple distinct graphs. Based on this representation, it provides declarative and combinable operators to analyze both single graphs and graph collections. Our current implementation is based on the distributed dataflow framework Apache Flink. We present the results of a first experimental study showing the scalability of our implementation on social network data with up to 11 billion edges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics Beyond nodes and edges: multiresolution algorithms for network data Viral marketing 2.0 NScaleSpark: subgraph-centric graph analytics on Apache Spark Analyzing extended property graphs with Apache Flink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1