基于随机森林的加权KNN算法

Huanian Zhang, Fanliang Bu
{"title":"基于随机森林的加权KNN算法","authors":"Huanian Zhang, Fanliang Bu","doi":"10.1145/3318299.3318313","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a weighted KNN algorithm based on random forests. The proposed algorithm fully measures the differences in the importance of each feature, and overcomes the shortcoming of k-nearest neighbor (KNN) algorithm in classifying unbalanced data sets and data sets of different feature importance. The classification accuracy of the KNN algorithm is effectively improved, and the performance of the proposed algorithm is verified through experiments.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Weighted KNN Algorithm Based on Random Forests\",\"authors\":\"Huanian Zhang, Fanliang Bu\",\"doi\":\"10.1145/3318299.3318313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed a weighted KNN algorithm based on random forests. The proposed algorithm fully measures the differences in the importance of each feature, and overcomes the shortcoming of k-nearest neighbor (KNN) algorithm in classifying unbalanced data sets and data sets of different feature importance. The classification accuracy of the KNN algorithm is effectively improved, and the performance of the proposed algorithm is verified through experiments.\",\"PeriodicalId\":164987,\"journal\":{\"name\":\"International Conference on Machine Learning and Computing\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3318299.3318313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于随机森林的加权KNN算法。该算法充分度量了各特征重要度的差异,克服了k近邻(KNN)算法对不平衡数据集和不同特征重要度数据集进行分类的缺点。有效提高了KNN算法的分类精度,并通过实验验证了所提算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weighted KNN Algorithm Based on Random Forests
In this paper, we proposed a weighted KNN algorithm based on random forests. The proposed algorithm fully measures the differences in the importance of each feature, and overcomes the shortcoming of k-nearest neighbor (KNN) algorithm in classifying unbalanced data sets and data sets of different feature importance. The classification accuracy of the KNN algorithm is effectively improved, and the performance of the proposed algorithm is verified through experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Competition for Multilayer Network Community Detection Power Load Forecasting Using a Refined LSTM Research on the Application of Big Data Management in Enterprise Management Decision-making and Execution Literature Review A Flexible Approach for Human Activity Recognition Based on Broad Learning System Decentralized Adaptive Latency-Aware Cloud-Edge-Dew Architecture for Unreliable Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1