P. Diatto, Anita Cerioli Regondi, S. Doering, D. Italiano, I. Maffeis, M. Marchesini, Marco Martin
{"title":"基于含油气系统、有机地球化学和PVT综合的区域储层流体分析与解释","authors":"P. Diatto, Anita Cerioli Regondi, S. Doering, D. Italiano, I. Maffeis, M. Marchesini, Marco Martin","doi":"10.2118/196733-ms","DOIUrl":null,"url":null,"abstract":"\n With the aim of improving the understanding of production behaviour in a multi-discovery asset and the evaluation of near-field exploration opportunities, an integrated study has been carried out involving three different disciplines: Fluid Thermodynamics (PVT), Organic Geochemistry and Petroleum Systems Modelling (PSM). The synergistic workflow has been undertaken starting from an accurate quality check of the initial dataset related to fluid samples and lab tests. By merging PVT and geochemical data, it was possible to carry out a robust statistical survey and explore correlations across different parameters and features; in this way, strict connection among many physical parameters and some oil maturity and biodegradation indices were identified. In the following step, after geo-referencing the fluid samples in the framework of the Petroleum Systems Model and tracking the locations of the source rocks, a reliable interpretation of the oil expulsion and migration history became possible over the whole reservoir fluid system. Finally, taking into account the simulated fluid phase envelopes, further insights were drawn in terms of the fluid phase behavior in different areas, contributing to reduce uncertainty and exploration risk for future activity in nearby prospects.","PeriodicalId":354509,"journal":{"name":"Day 3 Thu, September 19, 2019","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional Reservoir Fluid Analysis and Interpretation based on the Integration of Petroleum Systems, Organic Geochemistry and PVT\",\"authors\":\"P. Diatto, Anita Cerioli Regondi, S. Doering, D. Italiano, I. Maffeis, M. Marchesini, Marco Martin\",\"doi\":\"10.2118/196733-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With the aim of improving the understanding of production behaviour in a multi-discovery asset and the evaluation of near-field exploration opportunities, an integrated study has been carried out involving three different disciplines: Fluid Thermodynamics (PVT), Organic Geochemistry and Petroleum Systems Modelling (PSM). The synergistic workflow has been undertaken starting from an accurate quality check of the initial dataset related to fluid samples and lab tests. By merging PVT and geochemical data, it was possible to carry out a robust statistical survey and explore correlations across different parameters and features; in this way, strict connection among many physical parameters and some oil maturity and biodegradation indices were identified. In the following step, after geo-referencing the fluid samples in the framework of the Petroleum Systems Model and tracking the locations of the source rocks, a reliable interpretation of the oil expulsion and migration history became possible over the whole reservoir fluid system. Finally, taking into account the simulated fluid phase envelopes, further insights were drawn in terms of the fluid phase behavior in different areas, contributing to reduce uncertainty and exploration risk for future activity in nearby prospects.\",\"PeriodicalId\":354509,\"journal\":{\"name\":\"Day 3 Thu, September 19, 2019\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, September 19, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196733-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 19, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196733-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Regional Reservoir Fluid Analysis and Interpretation based on the Integration of Petroleum Systems, Organic Geochemistry and PVT
With the aim of improving the understanding of production behaviour in a multi-discovery asset and the evaluation of near-field exploration opportunities, an integrated study has been carried out involving three different disciplines: Fluid Thermodynamics (PVT), Organic Geochemistry and Petroleum Systems Modelling (PSM). The synergistic workflow has been undertaken starting from an accurate quality check of the initial dataset related to fluid samples and lab tests. By merging PVT and geochemical data, it was possible to carry out a robust statistical survey and explore correlations across different parameters and features; in this way, strict connection among many physical parameters and some oil maturity and biodegradation indices were identified. In the following step, after geo-referencing the fluid samples in the framework of the Petroleum Systems Model and tracking the locations of the source rocks, a reliable interpretation of the oil expulsion and migration history became possible over the whole reservoir fluid system. Finally, taking into account the simulated fluid phase envelopes, further insights were drawn in terms of the fluid phase behavior in different areas, contributing to reduce uncertainty and exploration risk for future activity in nearby prospects.