大型语言模型中持续的反穆斯林偏见

Abubakar Abid, Maheen Farooqi, James Y. Zou
{"title":"大型语言模型中持续的反穆斯林偏见","authors":"Abubakar Abid, Maheen Farooqi, James Y. Zou","doi":"10.1145/3461702.3462624","DOIUrl":null,"url":null,"abstract":"It has been observed that large-scale language models capture undesirable societal biases, e.g. relating to race and gender; yet religious bias has been relatively unexplored. We demonstrate that GPT-3, a state-of-the-art contextual language model, captures persistent Muslim-violence bias. We probe GPT-3 in various ways, including prompt completion, analogical reasoning, and story generation, to understand this anti-Muslim bias, demonstrating that it appears consistently and creatively in different uses of the model and that it is severe even compared to biases about other religious groups. For instance, Muslim is analogized to terrorist in 23% of test cases, while Jewish is mapped to its most common stereotype, money, in 5% of test cases. We quantify the positive distraction needed to overcome this bias with adversarial text prompts, and find that use of the most positive 6 adjectives reduces violent completions for Muslims from 66% to 20%, but which is still higher than for other religious groups.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"252","resultStr":"{\"title\":\"Persistent Anti-Muslim Bias in Large Language Models\",\"authors\":\"Abubakar Abid, Maheen Farooqi, James Y. Zou\",\"doi\":\"10.1145/3461702.3462624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been observed that large-scale language models capture undesirable societal biases, e.g. relating to race and gender; yet religious bias has been relatively unexplored. We demonstrate that GPT-3, a state-of-the-art contextual language model, captures persistent Muslim-violence bias. We probe GPT-3 in various ways, including prompt completion, analogical reasoning, and story generation, to understand this anti-Muslim bias, demonstrating that it appears consistently and creatively in different uses of the model and that it is severe even compared to biases about other religious groups. For instance, Muslim is analogized to terrorist in 23% of test cases, while Jewish is mapped to its most common stereotype, money, in 5% of test cases. We quantify the positive distraction needed to overcome this bias with adversarial text prompts, and find that use of the most positive 6 adjectives reduces violent completions for Muslims from 66% to 20%, but which is still higher than for other religious groups.\",\"PeriodicalId\":197336,\"journal\":{\"name\":\"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"252\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3461702.3462624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461702.3462624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 252

摘要

据观察,大规模的语言模型捕获了不受欢迎的社会偏见,例如与种族和性别有关的偏见;然而,宗教偏见相对来说还没有被研究过。我们证明了GPT-3,一个最先进的语境语言模型,捕捉到持续的穆斯林暴力偏见。我们以各种方式探究GPT-3,包括提示完成、类比推理和故事生成,以理解这种反穆斯林偏见,证明它在模型的不同使用中始终如一地、创造性地出现,甚至与对其他宗教团体的偏见相比,它也是严重的。例如,在23%的测试案例中,穆斯林被类比为恐怖分子,而在5%的测试案例中,犹太人被类比为最常见的刻板印象——金钱。我们量化了对抗文本提示克服这种偏见所需的积极分心,发现使用最积极的6个形容词将穆斯林的暴力完成率从66%降低到20%,但仍高于其他宗教群体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Persistent Anti-Muslim Bias in Large Language Models
It has been observed that large-scale language models capture undesirable societal biases, e.g. relating to race and gender; yet religious bias has been relatively unexplored. We demonstrate that GPT-3, a state-of-the-art contextual language model, captures persistent Muslim-violence bias. We probe GPT-3 in various ways, including prompt completion, analogical reasoning, and story generation, to understand this anti-Muslim bias, demonstrating that it appears consistently and creatively in different uses of the model and that it is severe even compared to biases about other religious groups. For instance, Muslim is analogized to terrorist in 23% of test cases, while Jewish is mapped to its most common stereotype, money, in 5% of test cases. We quantify the positive distraction needed to overcome this bias with adversarial text prompts, and find that use of the most positive 6 adjectives reduces violent completions for Muslims from 66% to 20%, but which is still higher than for other religious groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beyond Reasonable Doubt: Improving Fairness in Budget-Constrained Decision Making using Confidence Thresholds Measuring Automated Influence: Between Empirical Evidence and Ethical Values Artificial Intelligence and the Purpose of Social Systems Ethically Compliant Planning within Moral Communities Co-design and Ethical Artificial Intelligence for Health: Myths and Misconceptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1