从虚拟机迁移的角度分析最优资源管理策略

Kadu N. B, P. Jadhav, Santoshi A. Pawar
{"title":"从虚拟机迁移的角度分析最优资源管理策略","authors":"Kadu N. B, P. Jadhav, Santoshi A. Pawar","doi":"10.1109/STCR55312.2022.10009243","DOIUrl":null,"url":null,"abstract":"To save energy, reduce resource usage, and ensure cloud data center quality of service (QoS), virtual machine migration has become a key requirement with the rapid expansion of cloud environments. Dynamic migration of virtual machines is a successful way to meet growing demand for resources such as processing, connectivity, and storage. This proposal examines the design of control algorithms and their performance models used for migration within a local area network (LAN) or within a data center. The existing methods are investigated to accommodate large numbers of cloud users, improve computing infrastructure, and reduce time and energy spent in cloud data centers. User mobility helps reduce network overhead during VM migration. A key element of this proposal will show you how to optimize data deduplication and peer-to-peer (P2P) file sharing to help further improve the efficiency of data migration for VM storage.","PeriodicalId":338691,"journal":{"name":"2022 Smart Technologies, Communication and Robotics (STCR)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis on Optimal Resource Management Strategies: A Virtual Machine Migration Perspective\",\"authors\":\"Kadu N. B, P. Jadhav, Santoshi A. Pawar\",\"doi\":\"10.1109/STCR55312.2022.10009243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To save energy, reduce resource usage, and ensure cloud data center quality of service (QoS), virtual machine migration has become a key requirement with the rapid expansion of cloud environments. Dynamic migration of virtual machines is a successful way to meet growing demand for resources such as processing, connectivity, and storage. This proposal examines the design of control algorithms and their performance models used for migration within a local area network (LAN) or within a data center. The existing methods are investigated to accommodate large numbers of cloud users, improve computing infrastructure, and reduce time and energy spent in cloud data centers. User mobility helps reduce network overhead during VM migration. A key element of this proposal will show you how to optimize data deduplication and peer-to-peer (P2P) file sharing to help further improve the efficiency of data migration for VM storage.\",\"PeriodicalId\":338691,\"journal\":{\"name\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Smart Technologies, Communication and Robotics (STCR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STCR55312.2022.10009243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Smart Technologies, Communication and Robotics (STCR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STCR55312.2022.10009243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着云环境的快速扩展,为了节约能源、减少资源使用、保证云数据中心的服务质量,虚拟机迁移已成为一项关键需求。虚拟机的动态迁移是满足对资源(如处理、连接和存储)不断增长的需求的一种成功方法。本提案探讨了用于局域网(LAN)或数据中心内迁移的控制算法及其性能模型的设计。研究了现有的方法,以适应大量的云用户,改进计算基础设施,并减少在云数据中心花费的时间和精力。用户迁移有助于减少虚拟机迁移过程中的网络开销。该建议的一个关键要素将向您展示如何优化重复数据删除和P2P (peer-to-peer)文件共享,以帮助进一步提高虚拟机存储的数据迁移效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis on Optimal Resource Management Strategies: A Virtual Machine Migration Perspective
To save energy, reduce resource usage, and ensure cloud data center quality of service (QoS), virtual machine migration has become a key requirement with the rapid expansion of cloud environments. Dynamic migration of virtual machines is a successful way to meet growing demand for resources such as processing, connectivity, and storage. This proposal examines the design of control algorithms and their performance models used for migration within a local area network (LAN) or within a data center. The existing methods are investigated to accommodate large numbers of cloud users, improve computing infrastructure, and reduce time and energy spent in cloud data centers. User mobility helps reduce network overhead during VM migration. A key element of this proposal will show you how to optimize data deduplication and peer-to-peer (P2P) file sharing to help further improve the efficiency of data migration for VM storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GM-LAMP with Residual Learning Network for Millimetre Wave MIMO Architectures Analysis of Artificial Intelligence based Forecasting Techniques for Renewable Wind Power Generation Millimeter Wave Channel in Urban Micro / Urban Macro Environments: Path Loss Model and its Effect on Channel Capacity Estimating GeoJSON Coordinates using Image Processing to Improve Census Credibility Implementation Techniques for GIFT Block Cypher: A Real-Time Performance Comparison
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1