基于多传感器数据融合的过程监测系统实验研究

Qian Xiang, Z. Lu, Bei-Zhi Li, Jian-guo Yang
{"title":"基于多传感器数据融合的过程监测系统实验研究","authors":"Qian Xiang, Z. Lu, Bei-Zhi Li, Jian-guo Yang","doi":"10.1109/URKE.2012.6319578","DOIUrl":null,"url":null,"abstract":"Multi-sensor data fusion is a technology to enable combining information from several sources in order to form a unified picture. Focusing on the indirect method, an attempt was made to build up a multi-sensor data fusion system to monitor the condition of grinding wheels with force signals and the acoustic emission (AE) signals. An artificial immune algorithm based multi-signals processing method was presented in this paper. The intelligent monitoring system is capable of incremental supervised learning of grinding conditions and quickly pattern recognition, and can continually improve the monitoring precision. The experiment indicates that the accuracy of condition identification is about 87%, and able to meet the industrial need on the whole.","PeriodicalId":277189,"journal":{"name":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A process monitoring system based on multi-sensor data fusion: An experiment study\",\"authors\":\"Qian Xiang, Z. Lu, Bei-Zhi Li, Jian-guo Yang\",\"doi\":\"10.1109/URKE.2012.6319578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-sensor data fusion is a technology to enable combining information from several sources in order to form a unified picture. Focusing on the indirect method, an attempt was made to build up a multi-sensor data fusion system to monitor the condition of grinding wheels with force signals and the acoustic emission (AE) signals. An artificial immune algorithm based multi-signals processing method was presented in this paper. The intelligent monitoring system is capable of incremental supervised learning of grinding conditions and quickly pattern recognition, and can continually improve the monitoring precision. The experiment indicates that the accuracy of condition identification is about 87%, and able to meet the industrial need on the whole.\",\"PeriodicalId\":277189,\"journal\":{\"name\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URKE.2012.6319578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URKE.2012.6319578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多传感器数据融合是一种将多个来源的信息结合起来形成统一图像的技术。以间接方法为重点,尝试建立多传感器数据融合系统,利用力信号和声发射信号对砂轮状态进行监测。提出了一种基于人工免疫算法的多信号处理方法。该智能监控系统能够对磨削状态进行增量式监督学习和快速模式识别,不断提高监控精度。实验表明,该方法的状态识别准确率约为87%,总体上能够满足工业需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A process monitoring system based on multi-sensor data fusion: An experiment study
Multi-sensor data fusion is a technology to enable combining information from several sources in order to form a unified picture. Focusing on the indirect method, an attempt was made to build up a multi-sensor data fusion system to monitor the condition of grinding wheels with force signals and the acoustic emission (AE) signals. An artificial immune algorithm based multi-signals processing method was presented in this paper. The intelligent monitoring system is capable of incremental supervised learning of grinding conditions and quickly pattern recognition, and can continually improve the monitoring precision. The experiment indicates that the accuracy of condition identification is about 87%, and able to meet the industrial need on the whole.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Driving system stability analysis and improving of IPMSM Bayesian network structure learning for discrete and continuous variables Development of genetic algorithm on multi-vendor integrated procurement-production system under shared transportation and just-in-time delivery system Inter-transaction association rule mining in the Indonesia stock exchange market Extreme graphs with given order and edge-neighbor-scattering number
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1