高强OCTG管结构非均质性对抗硫化物腐蚀开裂性能的影响

A. Davydov, A. Zhitenev, N. Devyaterikova, K. Laev
{"title":"高强OCTG管结构非均质性对抗硫化物腐蚀开裂性能的影响","authors":"A. Davydov, A. Zhitenev, N. Devyaterikova, K. Laev","doi":"10.3390/IEC2M-09386","DOIUrl":null,"url":null,"abstract":": High-strength oil country tubular goods (OCTG) like C110, according to standard API 5CT (yield strength at least 758 MPa), are subject to requirements in terms of mechanical and corrosion properties. In this work, we studied the influence of seamless tubes microstructure with a 177.8 mm diameter and 10.36 mm wall thickness of class С 110 high-strength steel to sulfide stress corrosion cracking (SSC) and sulfide stress corrosion cracking with low strain rates (SSRT). Tubes were obtained from continuous billets by screw piercing with preliminary quenching and temper-ing. It was established that cracking during the tests always begins from the inner surface of the tube. Rough segregation bands were found on the inner tube surface, which occupies about a third of the thickness. It is shown that the SSRT assessment technique allows to estimate the threshold value of the resistance.","PeriodicalId":429720,"journal":{"name":"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of structural heterogeneity of high-strength OCTG tubes on sulfide corrosion cracking resistance\",\"authors\":\"A. Davydov, A. Zhitenev, N. Devyaterikova, K. Laev\",\"doi\":\"10.3390/IEC2M-09386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": High-strength oil country tubular goods (OCTG) like C110, according to standard API 5CT (yield strength at least 758 MPa), are subject to requirements in terms of mechanical and corrosion properties. In this work, we studied the influence of seamless tubes microstructure with a 177.8 mm diameter and 10.36 mm wall thickness of class С 110 high-strength steel to sulfide stress corrosion cracking (SSC) and sulfide stress corrosion cracking with low strain rates (SSRT). Tubes were obtained from continuous billets by screw piercing with preliminary quenching and temper-ing. It was established that cracking during the tests always begins from the inner surface of the tube. Rough segregation bands were found on the inner tube surface, which occupies about a third of the thickness. It is shown that the SSRT assessment technique allows to estimate the threshold value of the resistance.\",\"PeriodicalId\":429720,\"journal\":{\"name\":\"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/IEC2M-09386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/IEC2M-09386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

:高强度石油管材(OCTG)如C110,根据标准API 5CT(屈服强度至少758 MPa),在机械和腐蚀性能方面有要求。本文研究了直径为177.8 mm、壁厚为10.36 mm的С 110级高强钢无缝管微观结构对硫化物应力腐蚀开裂(SSC)和低应变速率硫化物应力腐蚀开裂(SSRT)的影响。采用螺纹冲孔法对连续钢坯进行预淬火回火加工,获得管材。实验结果表明,在试验过程中,开裂总是从管的内表面开始。管内表面有粗糙的偏析带,约占厚度的三分之一。结果表明,SSRT评估技术可以估计出电阻的阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of structural heterogeneity of high-strength OCTG tubes on sulfide corrosion cracking resistance
: High-strength oil country tubular goods (OCTG) like C110, according to standard API 5CT (yield strength at least 758 MPa), are subject to requirements in terms of mechanical and corrosion properties. In this work, we studied the influence of seamless tubes microstructure with a 177.8 mm diameter and 10.36 mm wall thickness of class С 110 high-strength steel to sulfide stress corrosion cracking (SSC) and sulfide stress corrosion cracking with low strain rates (SSRT). Tubes were obtained from continuous billets by screw piercing with preliminary quenching and temper-ing. It was established that cracking during the tests always begins from the inner surface of the tube. Rough segregation bands were found on the inner tube surface, which occupies about a third of the thickness. It is shown that the SSRT assessment technique allows to estimate the threshold value of the resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of structural heterogeneity of high-strength OCTG tubes on sulfide corrosion cracking resistance Quantitative description of the microstructure of duplex stainless steels using selective etching DETERMINATION OF THE REACTION RATE CONTROLLING RESISTANCE OF GOETHITE IRON ORE REDUCTION USING CO/CO2 GASES FROM WOOD CHARCOAL Numerical and Analytical Analysis of the Low Cycle Fatigue Behavior of Notched and Un-notched 316 L (N) Austenitic Stainless Steel Samples at Ambient and Elevated Temperatures Investigation of factors influencing on the autoclave tests results of internal anticorrosive polymer coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1