利用深度神经网络对说话人和通道可变性进行建模,实现对说话人的鲁棒验证

Gautam Bhattacharya, Md. Jahangir Alam, P. Kenny, Vishwa Gupta
{"title":"利用深度神经网络对说话人和通道可变性进行建模,实现对说话人的鲁棒验证","authors":"Gautam Bhattacharya, Md. Jahangir Alam, P. Kenny, Vishwa Gupta","doi":"10.1109/SLT.2016.7846264","DOIUrl":null,"url":null,"abstract":"We propose to improve the performance of i-vector based speaker verification by processing the i-vectors with a deep neural network before they are fed to a cosine distance or probabilistic linear discriminant analysis (PLDA) classifier. To this end we build on an existing model that we refer to as Non-linear Within Class Normalization (NWCN) and introduce a novel Speaker Classifier Network (SCN). Both models deliver impressive speaker verification performance, showing a 56% and 68% relative improvement over standard i-vectors when combined with a cosine distance backend. The NWCN model also reduces the equal error rate for PLDA from 1.78% to 1.63%. We also test these models under the constraints of domain mismatch, i.e. when no in-domain training data is available. Under these conditions, SCN features in combination with cosine distance performs better than the PLDA baseline, achieving an equal error rate of 2.92% as compared to 3.37%.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Modelling speaker and channel variability using deep neural networks for robust speaker verification\",\"authors\":\"Gautam Bhattacharya, Md. Jahangir Alam, P. Kenny, Vishwa Gupta\",\"doi\":\"10.1109/SLT.2016.7846264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose to improve the performance of i-vector based speaker verification by processing the i-vectors with a deep neural network before they are fed to a cosine distance or probabilistic linear discriminant analysis (PLDA) classifier. To this end we build on an existing model that we refer to as Non-linear Within Class Normalization (NWCN) and introduce a novel Speaker Classifier Network (SCN). Both models deliver impressive speaker verification performance, showing a 56% and 68% relative improvement over standard i-vectors when combined with a cosine distance backend. The NWCN model also reduces the equal error rate for PLDA from 1.78% to 1.63%. We also test these models under the constraints of domain mismatch, i.e. when no in-domain training data is available. Under these conditions, SCN features in combination with cosine distance performs better than the PLDA baseline, achieving an equal error rate of 2.92% as compared to 3.37%.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们提出在i-向量被输入余弦距离或概率线性判别分析(PLDA)分类器之前,通过深度神经网络处理i-向量来提高基于i-向量的说话人验证的性能。为此,我们建立了一个现有的模型,我们称之为非线性类内归一化(NWCN),并引入了一个新的说话人分类器网络(SCN)。这两种模型都提供了令人印象深刻的扬声器验证性能,在与余弦距离后端相结合时,比标准i-vector显示出56%和68%的相对改进。NWCN模型还将PLDA的等错误率从1.78%降低到1.63%。我们还在领域不匹配的约束下对这些模型进行了测试,即在没有可用的领域内训练数据的情况下。在这些条件下,SCN特征与余弦距离的结合优于PLDA基线,错误率为2.92%,错误率为3.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling speaker and channel variability using deep neural networks for robust speaker verification
We propose to improve the performance of i-vector based speaker verification by processing the i-vectors with a deep neural network before they are fed to a cosine distance or probabilistic linear discriminant analysis (PLDA) classifier. To this end we build on an existing model that we refer to as Non-linear Within Class Normalization (NWCN) and introduce a novel Speaker Classifier Network (SCN). Both models deliver impressive speaker verification performance, showing a 56% and 68% relative improvement over standard i-vectors when combined with a cosine distance backend. The NWCN model also reduces the equal error rate for PLDA from 1.78% to 1.63%. We also test these models under the constraints of domain mismatch, i.e. when no in-domain training data is available. Under these conditions, SCN features in combination with cosine distance performs better than the PLDA baseline, achieving an equal error rate of 2.92% as compared to 3.37%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification Learning dialogue dynamics with the method of moments A study of speech distortion conditions in real scenarios for speech processing applications Comparing speaker independent and speaker adapted classification for word prominence detection Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1