{"title":"基于分区柱- qcm和人工神经网络的混合蒸汽识别","authors":"M. Rivai, A. Arifin, Eva Inaiyah Agustin","doi":"10.1109/ICTS.2016.7910294","DOIUrl":null,"url":null,"abstract":"This Paper presents the identification of mixed vapour using electronic nose system composed of Quartz Crystal Microbalance (QCM) sensor array and a partition column of gas chromatography. The polymer coated QCMs produced a specific frequency shift. The data set was processed by an Artificial Neural Network using Backpropagation algorithm as a pattern recognition. The result showed that this equipment was able to identify five types of vapours namely benzene, acetone, isopropyl alcohol, non-polar and polar mixture (i.e. benzene and acetone), and also polar and polar mixture (i.e. isopropyl alcohol and acetone) with the identification rate of 96%.","PeriodicalId":177275,"journal":{"name":"2016 International Conference on Information & Communication Technology and Systems (ICTS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Mixed vapour identification using partition column-QCMs and Artificial Neural Network\",\"authors\":\"M. Rivai, A. Arifin, Eva Inaiyah Agustin\",\"doi\":\"10.1109/ICTS.2016.7910294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This Paper presents the identification of mixed vapour using electronic nose system composed of Quartz Crystal Microbalance (QCM) sensor array and a partition column of gas chromatography. The polymer coated QCMs produced a specific frequency shift. The data set was processed by an Artificial Neural Network using Backpropagation algorithm as a pattern recognition. The result showed that this equipment was able to identify five types of vapours namely benzene, acetone, isopropyl alcohol, non-polar and polar mixture (i.e. benzene and acetone), and also polar and polar mixture (i.e. isopropyl alcohol and acetone) with the identification rate of 96%.\",\"PeriodicalId\":177275,\"journal\":{\"name\":\"2016 International Conference on Information & Communication Technology and Systems (ICTS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Information & Communication Technology and Systems (ICTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTS.2016.7910294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Information & Communication Technology and Systems (ICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTS.2016.7910294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mixed vapour identification using partition column-QCMs and Artificial Neural Network
This Paper presents the identification of mixed vapour using electronic nose system composed of Quartz Crystal Microbalance (QCM) sensor array and a partition column of gas chromatography. The polymer coated QCMs produced a specific frequency shift. The data set was processed by an Artificial Neural Network using Backpropagation algorithm as a pattern recognition. The result showed that this equipment was able to identify five types of vapours namely benzene, acetone, isopropyl alcohol, non-polar and polar mixture (i.e. benzene and acetone), and also polar and polar mixture (i.e. isopropyl alcohol and acetone) with the identification rate of 96%.