二值传感器网络中基于支持向量机的运动目标跟踪算法

Dusadee Apicharttrisorn, Kittipat Apicharttrisorn, T. Kasetkasem
{"title":"二值传感器网络中基于支持向量机的运动目标跟踪算法","authors":"Dusadee Apicharttrisorn, Kittipat Apicharttrisorn, T. Kasetkasem","doi":"10.1109/ISCIT.2013.6645915","DOIUrl":null,"url":null,"abstract":"Wireless sensor technologies have enabled us to deploy such small sensors to monitor an area of interest. Object tracking is one of the most attractive applications to be implemented with wireless sensor networks (WSNs). However, many solutions are struggled with energy-draining global positioning system (GPS), poorly-performed trilateration for indoor usage, and impractical, complex algorithms to be implemented in sensor nodes. This paper proposes a moving object tracking algorithm using support vector machines (MOT-SVM). The MOT-SVM takes advantage of light-weighted directional binary sensor networks, and state-of-the-art signal processing algorithms, namely the support vector machines and particle filters. We compare our proposed algorithm with the Aslam's work [1] through the simulation. We examine our algorithms for various movement scenarios such as the linear, random and the “8”-model trajectories, and the scenarios in which observing sensors make observation errors.","PeriodicalId":356009,"journal":{"name":"2013 13th International Symposium on Communications and Information Technologies (ISCIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A moving object tracking algorithm using support vector machines in binary sensor networks\",\"authors\":\"Dusadee Apicharttrisorn, Kittipat Apicharttrisorn, T. Kasetkasem\",\"doi\":\"10.1109/ISCIT.2013.6645915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor technologies have enabled us to deploy such small sensors to monitor an area of interest. Object tracking is one of the most attractive applications to be implemented with wireless sensor networks (WSNs). However, many solutions are struggled with energy-draining global positioning system (GPS), poorly-performed trilateration for indoor usage, and impractical, complex algorithms to be implemented in sensor nodes. This paper proposes a moving object tracking algorithm using support vector machines (MOT-SVM). The MOT-SVM takes advantage of light-weighted directional binary sensor networks, and state-of-the-art signal processing algorithms, namely the support vector machines and particle filters. We compare our proposed algorithm with the Aslam's work [1] through the simulation. We examine our algorithms for various movement scenarios such as the linear, random and the “8”-model trajectories, and the scenarios in which observing sensors make observation errors.\",\"PeriodicalId\":356009,\"journal\":{\"name\":\"2013 13th International Symposium on Communications and Information Technologies (ISCIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th International Symposium on Communications and Information Technologies (ISCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCIT.2013.6645915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th International Symposium on Communications and Information Technologies (ISCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT.2013.6645915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

无线传感器技术使我们能够部署这种小型传感器来监测感兴趣的区域。目标跟踪是无线传感器网络(WSNs)最具吸引力的应用之一。然而,许多解决方案都与消耗能量的全球定位系统(GPS)、室内使用性能差的三位一体以及在传感器节点中实现不切实际的复杂算法有关。提出了一种基于支持向量机(MOT-SVM)的运动目标跟踪算法。MOT-SVM利用了轻量级定向二元传感器网络和最先进的信号处理算法,即支持向量机和粒子滤波器。我们通过仿真将我们提出的算法与Aslam的工作[1]进行了比较。我们研究了各种运动场景的算法,如线性、随机和“8”模型轨迹,以及观察传感器产生观察误差的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A moving object tracking algorithm using support vector machines in binary sensor networks
Wireless sensor technologies have enabled us to deploy such small sensors to monitor an area of interest. Object tracking is one of the most attractive applications to be implemented with wireless sensor networks (WSNs). However, many solutions are struggled with energy-draining global positioning system (GPS), poorly-performed trilateration for indoor usage, and impractical, complex algorithms to be implemented in sensor nodes. This paper proposes a moving object tracking algorithm using support vector machines (MOT-SVM). The MOT-SVM takes advantage of light-weighted directional binary sensor networks, and state-of-the-art signal processing algorithms, namely the support vector machines and particle filters. We compare our proposed algorithm with the Aslam's work [1] through the simulation. We examine our algorithms for various movement scenarios such as the linear, random and the “8”-model trajectories, and the scenarios in which observing sensors make observation errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance evaluation of ETX metric on OLSR in heterogeneous networks Real-time advisory service for orchid care Realtime transmission of full high-definition 30 frames/s videos over 8×8 MIMO-OFDM channels using HACP-based lossless coding Design of ZigBee based WSN for smart demand responsive home energy management system Receptive field resolution analysis in convolutional feature extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1