面向对象软件系统中使用数据流信息进行关注点识别

M. Trifu
{"title":"面向对象软件系统中使用数据流信息进行关注点识别","authors":"M. Trifu","doi":"10.1109/CSMR.2008.4493314","DOIUrl":null,"url":null,"abstract":"Improper encapsulation of cross-cutting concerns significantly hinders software understandability and contributes to rising software maintenance costs. Concern identification covers the necessary first step towards separating and encapsulating concerns in existing object-oriented code. Because most of the current approaches rely on syntactic rather than semantic information, they do not provide sufficient support for software understanding. This paper proposes a new semi-automated approach for concern identification specifically designed to support software understanding, which starts from a set of related variables and uses static dataflow information to determine the concern skeleton, a data-oriented abstraction of a concern. We discuss the application of this approach to the JHotDraw case-study, the de facto standard benchmark for concern identification, and show that it can be used to identify a significant number of concerns, including several concerns not previously discussed in the existing literature.","PeriodicalId":350838,"journal":{"name":"2008 12th European Conference on Software Maintenance and Reengineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Using Dataflow Information for Concern Identification in Object-Oriented Software Systems\",\"authors\":\"M. Trifu\",\"doi\":\"10.1109/CSMR.2008.4493314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improper encapsulation of cross-cutting concerns significantly hinders software understandability and contributes to rising software maintenance costs. Concern identification covers the necessary first step towards separating and encapsulating concerns in existing object-oriented code. Because most of the current approaches rely on syntactic rather than semantic information, they do not provide sufficient support for software understanding. This paper proposes a new semi-automated approach for concern identification specifically designed to support software understanding, which starts from a set of related variables and uses static dataflow information to determine the concern skeleton, a data-oriented abstraction of a concern. We discuss the application of this approach to the JHotDraw case-study, the de facto standard benchmark for concern identification, and show that it can be used to identify a significant number of concerns, including several concerns not previously discussed in the existing literature.\",\"PeriodicalId\":350838,\"journal\":{\"name\":\"2008 12th European Conference on Software Maintenance and Reengineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 12th European Conference on Software Maintenance and Reengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSMR.2008.4493314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 12th European Conference on Software Maintenance and Reengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSMR.2008.4493314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

对横切关注点的不当封装严重阻碍了软件的可理解性,并增加了软件维护成本。关注标识涵盖了在现有的面向对象代码中分离和封装关注所必需的第一步。由于目前大多数方法依赖于语法信息而不是语义信息,因此它们不能为软件理解提供足够的支持。本文提出了一种新的半自动化的关注识别方法,专门用于支持软件理解,该方法从一组相关变量开始,并使用静态数据流信息来确定关注框架,即关注的面向数据的抽象。我们讨论了这种方法在JHotDraw案例研究中的应用,JHotDraw案例研究是关注点识别的实际标准基准,并展示了它可以用于识别大量关注点,包括先前在现有文献中未讨论的几个关注点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Dataflow Information for Concern Identification in Object-Oriented Software Systems
Improper encapsulation of cross-cutting concerns significantly hinders software understandability and contributes to rising software maintenance costs. Concern identification covers the necessary first step towards separating and encapsulating concerns in existing object-oriented code. Because most of the current approaches rely on syntactic rather than semantic information, they do not provide sufficient support for software understanding. This paper proposes a new semi-automated approach for concern identification specifically designed to support software understanding, which starts from a set of related variables and uses static dataflow information to determine the concern skeleton, a data-oriented abstraction of a concern. We discuss the application of this approach to the JHotDraw case-study, the de facto standard benchmark for concern identification, and show that it can be used to identify a significant number of concerns, including several concerns not previously discussed in the existing literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modularity-Oriented Refactoring Quantifying Maintainability in Feature Oriented Product Lines Assessing the Support of ER and UML Class Diagrams during Maintenance Activities on Data Models A Flexible Framework to Support Collaborative Software Evolution Analysis Towards a Benchmark for Evaluating Design Pattern Miner Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1