基于Donsker Vardhan的记忆过程密度估计

Ziv Aharoni, Dor Tsur, H. Permuter
{"title":"基于Donsker Vardhan的记忆过程密度估计","authors":"Ziv Aharoni, Dor Tsur, H. Permuter","doi":"10.1109/ISIT50566.2022.9834775","DOIUrl":null,"url":null,"abstract":"Density estimation plays an important role in modeling random variables (RVs) with continuous alphabets. This work provides an algorithm that estimates the probability density function (PDF) of stationary and ergodic random processes using recurrent neural networks (RNNs). The main idea is to decompose the target PDF into a known auxiliary PDF and a likelihood ratio between the target and auxiliary PDFs. The algorithm focuses on estimating the likelihood ratio using the Donsker Vardhan (DV) variational formula of Kullback Leibler (KL) divergence. Together, the maximizer of the DV formula and the auxiliary PDF are used to construct the estimator of the target PDF in the form of a Gibbs density. The obtained estimator converges to the target PDF in total variation (TV) and in distribution. Also, we show that proposed estimator minimizes the cross entropy (CE) between the target and auxiliary distribution, and that with a proper choice of the auxiliary distribution, it defines a tight upper bound on the entropy rate. We demonstrate this approach by estimating the density of a Gaussian hidden Markov model.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Density Estimation of Processes with Memory via Donsker Vardhan\",\"authors\":\"Ziv Aharoni, Dor Tsur, H. Permuter\",\"doi\":\"10.1109/ISIT50566.2022.9834775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density estimation plays an important role in modeling random variables (RVs) with continuous alphabets. This work provides an algorithm that estimates the probability density function (PDF) of stationary and ergodic random processes using recurrent neural networks (RNNs). The main idea is to decompose the target PDF into a known auxiliary PDF and a likelihood ratio between the target and auxiliary PDFs. The algorithm focuses on estimating the likelihood ratio using the Donsker Vardhan (DV) variational formula of Kullback Leibler (KL) divergence. Together, the maximizer of the DV formula and the auxiliary PDF are used to construct the estimator of the target PDF in the form of a Gibbs density. The obtained estimator converges to the target PDF in total variation (TV) and in distribution. Also, we show that proposed estimator minimizes the cross entropy (CE) between the target and auxiliary distribution, and that with a proper choice of the auxiliary distribution, it defines a tight upper bound on the entropy rate. We demonstrate this approach by estimating the density of a Gaussian hidden Markov model.\",\"PeriodicalId\":348168,\"journal\":{\"name\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT50566.2022.9834775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

密度估计在连续字母随机变量建模中起着重要的作用。这项工作提供了一种算法,使用递归神经网络(rnn)估计平稳和遍历随机过程的概率密度函数(PDF)。主要思想是将目标PDF分解为已知的辅助PDF和目标PDF与辅助PDF之间的似然比。该算法的重点是利用Kullback Leibler (KL)散度的Donsker Vardhan (DV)变分公式估计似然比。利用DV公式的最大化器和辅助PDF构造了目标PDF的吉布斯密度估计量。得到的估计量在总变差和分布上收敛于目标PDF。此外,我们还证明了所提出的估计器最小化了目标分布与辅助分布之间的交叉熵(CE),并且在适当选择辅助分布的情况下,它定义了熵率的紧密上界。我们通过估计高斯隐马尔可夫模型的密度来证明这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Density Estimation of Processes with Memory via Donsker Vardhan
Density estimation plays an important role in modeling random variables (RVs) with continuous alphabets. This work provides an algorithm that estimates the probability density function (PDF) of stationary and ergodic random processes using recurrent neural networks (RNNs). The main idea is to decompose the target PDF into a known auxiliary PDF and a likelihood ratio between the target and auxiliary PDFs. The algorithm focuses on estimating the likelihood ratio using the Donsker Vardhan (DV) variational formula of Kullback Leibler (KL) divergence. Together, the maximizer of the DV formula and the auxiliary PDF are used to construct the estimator of the target PDF in the form of a Gibbs density. The obtained estimator converges to the target PDF in total variation (TV) and in distribution. Also, we show that proposed estimator minimizes the cross entropy (CE) between the target and auxiliary distribution, and that with a proper choice of the auxiliary distribution, it defines a tight upper bound on the entropy rate. We demonstrate this approach by estimating the density of a Gaussian hidden Markov model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Low Rank column-wise Compressive Sensing Ternary Message Passing Decoding of RS-SPC Product Codes Understanding Deep Neural Networks Using Sliced Mutual Information Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network Unlimited Sampling via Generalized Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1