基于MOSSE相关滤波器的人脸特征定位

D. Bolme, J. Beveridge
{"title":"基于MOSSE相关滤波器的人脸特征定位","authors":"D. Bolme, J. Beveridge","doi":"10.1109/FIIW.2012.6378323","DOIUrl":null,"url":null,"abstract":"Accurately measuring the location of facial features is an important step in many face recognition algorithms. Every face is unique which means localization needs to be tolerant of differences between individual subjects. Additionally, changing illumination, poor focus, and deformation due to expression changes complicate the problem. This paper introduces a method for locating facial features that uses Minimum Output Sum of Squared Error (MOSSE) correlation filters to model object appearance and is combined with a Robust Active Shape Model (ASM) to model facial geometry. It is demonstrated that MOSSE correlation filters outperform Stasm (an open source ASM implementation), Gabor Jets and in some cases even matches human performance.","PeriodicalId":170653,"journal":{"name":"2012 Future of Instrumentation International Workshop (FIIW) Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Facial feature localization using MOSSE correlation filters\",\"authors\":\"D. Bolme, J. Beveridge\",\"doi\":\"10.1109/FIIW.2012.6378323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately measuring the location of facial features is an important step in many face recognition algorithms. Every face is unique which means localization needs to be tolerant of differences between individual subjects. Additionally, changing illumination, poor focus, and deformation due to expression changes complicate the problem. This paper introduces a method for locating facial features that uses Minimum Output Sum of Squared Error (MOSSE) correlation filters to model object appearance and is combined with a Robust Active Shape Model (ASM) to model facial geometry. It is demonstrated that MOSSE correlation filters outperform Stasm (an open source ASM implementation), Gabor Jets and in some cases even matches human performance.\",\"PeriodicalId\":170653,\"journal\":{\"name\":\"2012 Future of Instrumentation International Workshop (FIIW) Proceedings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Future of Instrumentation International Workshop (FIIW) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIIW.2012.6378323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Future of Instrumentation International Workshop (FIIW) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIIW.2012.6378323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在许多人脸识别算法中,准确测量人脸特征的位置是一个重要步骤。每一张脸都是独一无二的,这意味着本地化需要容忍个体受试者之间的差异。此外,光照变化、聚焦不佳以及表情变化导致的变形使问题复杂化。本文介绍了一种利用最小输出平方误差和(MOSSE)相关滤波器对目标外观进行建模,并结合鲁棒主动形状模型(ASM)对面部几何形状进行建模的人脸特征定位方法。结果表明,MOSSE相关滤波器的性能优于Stasm(一种开源ASM实现)、Gabor Jets,在某些情况下甚至与人类的性能相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facial feature localization using MOSSE correlation filters
Accurately measuring the location of facial features is an important step in many face recognition algorithms. Every face is unique which means localization needs to be tolerant of differences between individual subjects. Additionally, changing illumination, poor focus, and deformation due to expression changes complicate the problem. This paper introduces a method for locating facial features that uses Minimum Output Sum of Squared Error (MOSSE) correlation filters to model object appearance and is combined with a Robust Active Shape Model (ASM) to model facial geometry. It is demonstrated that MOSSE correlation filters outperform Stasm (an open source ASM implementation), Gabor Jets and in some cases even matches human performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Calibration monitoring for sensor calibration interval extension: Identifying technical gaps Using micro-electro-mechanical systems (MEMS) as small antennas Sensing and communications in an underwater environment Automating and accelerating the additive manufacturing design process with multi-objective constrained evolutionary optimization and HPC/Cloud computing Prognostics health management and life beyond 60 for nuclear power plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1