通过动态符号执行补充机器学习分类器:“人类与机器人生成”的推文

S. L. Shrestha, Saroj Panda, Christoph Csallner
{"title":"通过动态符号执行补充机器学习分类器:“人类与机器人生成”的推文","authors":"S. L. Shrestha, Saroj Panda, Christoph Csallner","doi":"10.1145/3194104.3194111","DOIUrl":null,"url":null,"abstract":"Recent machine learning approaches for classifying text as human-written or bot-generated rely on training sets that are large, labeled diligently, and representative of the underlying domain. While valuable, these machine learning approaches ignore programs as an additional source of such training sets. To address this problem of incomplete training sets, this paper proposes to systematically supplement existing training sets with samples inferred via program analysis. In our preliminary evaluation, training sets enriched with samples inferred via dynamic symbolic execution were able to improve machine learning classifier accuracy for simple string-generating programs.","PeriodicalId":249268,"journal":{"name":"2018 IEEE/ACM 6th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Complementing Machine Learning Classifiers via Dynamic Symbolic Execution: \\\"Human vs. Bot Generated\\\" Tweets\",\"authors\":\"S. L. Shrestha, Saroj Panda, Christoph Csallner\",\"doi\":\"10.1145/3194104.3194111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent machine learning approaches for classifying text as human-written or bot-generated rely on training sets that are large, labeled diligently, and representative of the underlying domain. While valuable, these machine learning approaches ignore programs as an additional source of such training sets. To address this problem of incomplete training sets, this paper proposes to systematically supplement existing training sets with samples inferred via program analysis. In our preliminary evaluation, training sets enriched with samples inferred via dynamic symbolic execution were able to improve machine learning classifier accuracy for simple string-generating programs.\",\"PeriodicalId\":249268,\"journal\":{\"name\":\"2018 IEEE/ACM 6th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 6th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194104.3194111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 6th International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194104.3194111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近用于将文本分类为人类编写或机器人生成的机器学习方法依赖于大型、勤奋标记并代表底层领域的训练集。虽然有价值,但这些机器学习方法忽略了程序作为这种训练集的额外来源。为了解决训练集不完整的问题,本文提出用程序分析推断的样本系统地补充现有的训练集。在我们的初步评估中,通过动态符号执行推断的样本丰富的训练集能够提高简单字符串生成程序的机器学习分类器的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complementing Machine Learning Classifiers via Dynamic Symbolic Execution: "Human vs. Bot Generated" Tweets
Recent machine learning approaches for classifying text as human-written or bot-generated rely on training sets that are large, labeled diligently, and representative of the underlying domain. While valuable, these machine learning approaches ignore programs as an additional source of such training sets. To address this problem of incomplete training sets, this paper proposes to systematically supplement existing training sets with samples inferred via program analysis. In our preliminary evaluation, training sets enriched with samples inferred via dynamic symbolic execution were able to improve machine learning classifier accuracy for simple string-generating programs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-Automatic Generation of Active Ontologies from Web Forms for Intelligent Assistants Evaluating the Adaptive Selection of Classifiers for Cross-Project Bug Prediction A Replication Study: Just-in-Time Defect Prediction with Ensemble Learning Integrating a Dialog Component into a Framework for Spoken Language Understanding Complementing Machine Learning Classifiers via Dynamic Symbolic Execution: "Human vs. Bot Generated" Tweets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1