HetNets中最大最小公平资源分配:分布式算法和混合架构

Ehsan Aryafar, A. Keshavarz-Haddad, Carlee Joe-Wong, M. Chiang
{"title":"HetNets中最大最小公平资源分配:分布式算法和混合架构","authors":"Ehsan Aryafar, A. Keshavarz-Haddad, Carlee Joe-Wong, M. Chiang","doi":"10.1109/ICDCS.2017.205","DOIUrl":null,"url":null,"abstract":"We study the resource allocation problem in RAN-level integrated HetNets. This emerging HetNets paradigm allows for dynamic traffic splitting across radio access technologies for each client, and then for aggregating the traffic inside the network to improve the overall resource utilization. We focus on the max-min fair service rate allocation across the clients, and study the properties of the optimal solution. Based on the analysis, we design a low complexity distributed algorithm that tries to achieve max-min fairness. We also design a hybrid network architecture that leverages opportunistic centralized network supervision to augment the distributed solution. We analyze the performance of our proposed algorithms and prove their convergence. We also derive conditions under which the outcome is optimal. When the conditions are not satisfied, we provide constant upper and lower bounds on the optimality gap. Finally, we study the convergence time of our distributed solution and show that leveraging appropriate policies in its design significantly reduces the convergence time.","PeriodicalId":127689,"journal":{"name":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Max-Min Fair Resource Allocation in HetNets: Distributed Algorithms and Hybrid Architecture\",\"authors\":\"Ehsan Aryafar, A. Keshavarz-Haddad, Carlee Joe-Wong, M. Chiang\",\"doi\":\"10.1109/ICDCS.2017.205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the resource allocation problem in RAN-level integrated HetNets. This emerging HetNets paradigm allows for dynamic traffic splitting across radio access technologies for each client, and then for aggregating the traffic inside the network to improve the overall resource utilization. We focus on the max-min fair service rate allocation across the clients, and study the properties of the optimal solution. Based on the analysis, we design a low complexity distributed algorithm that tries to achieve max-min fairness. We also design a hybrid network architecture that leverages opportunistic centralized network supervision to augment the distributed solution. We analyze the performance of our proposed algorithms and prove their convergence. We also derive conditions under which the outcome is optimal. When the conditions are not satisfied, we provide constant upper and lower bounds on the optimality gap. Finally, we study the convergence time of our distributed solution and show that leveraging appropriate policies in its design significantly reduces the convergence time.\",\"PeriodicalId\":127689,\"journal\":{\"name\":\"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2017.205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2017.205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究了局域网级集成HetNets中的资源分配问题。这种新兴的HetNets范例允许为每个客户端跨无线电接入技术进行动态流量拆分,然后在网络内聚合流量以提高整体资源利用率。重点研究了客户间最大最小公平费率分配问题,并研究了最优解的性质。在此基础上,我们设计了一种低复杂度的分布式算法,力求达到最大最小公平性。我们还设计了一个混合网络架构,利用机会集中式网络监督来增强分布式解决方案。我们分析了我们提出的算法的性能并证明了它们的收敛性。我们还推导出结果最优的条件。当条件不满足时,给出了最优性间隙的常数上界和下界。最后,我们研究了分布式解决方案的收敛时间,并表明在其设计中使用适当的策略可以显着减少收敛时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Max-Min Fair Resource Allocation in HetNets: Distributed Algorithms and Hybrid Architecture
We study the resource allocation problem in RAN-level integrated HetNets. This emerging HetNets paradigm allows for dynamic traffic splitting across radio access technologies for each client, and then for aggregating the traffic inside the network to improve the overall resource utilization. We focus on the max-min fair service rate allocation across the clients, and study the properties of the optimal solution. Based on the analysis, we design a low complexity distributed algorithm that tries to achieve max-min fairness. We also design a hybrid network architecture that leverages opportunistic centralized network supervision to augment the distributed solution. We analyze the performance of our proposed algorithms and prove their convergence. We also derive conditions under which the outcome is optimal. When the conditions are not satisfied, we provide constant upper and lower bounds on the optimality gap. Finally, we study the convergence time of our distributed solution and show that leveraging appropriate policies in its design significantly reduces the convergence time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proximity Awareness Approach to Enhance Propagation Delay on the Bitcoin Peer-to-Peer Network ACTiCLOUD: Enabling the Next Generation of Cloud Applications The Internet of Things and Multiagent Systems: Decentralized Intelligence in Distributed Computing Decentralised Runtime Monitoring for Access Control Systems in Cloud Federations The Case for Using Content-Centric Networking for Distributing High-Energy Physics Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1