冻干装置的Volterra模型预测控制

Yancho V. Todorov, Tsvetan D. Tsvetkov
{"title":"冻干装置的Volterra模型预测控制","authors":"Yancho V. Todorov, Tsvetan D. Tsvetkov","doi":"10.1109/IS.2008.4670467","DOIUrl":null,"url":null,"abstract":"Lyophilization plants are widely used by pharmaceutical industries to produce stable dried medications and important preparations. Since, a Lyophilization cycle involves a high energy demands it is needed to be used an improved control strategy in order to minimize the operating costs. This paper describes a method for designing a nonlinear model predictive controller to be used in a Lyophilization plant. The controller is based on a truncated fuzzy-neural Volterra predictive model and a simplified gradient optimization algorithm. The proposed approach is studied to control the product temperature in a Lyophilization plant. The efficiency of the proposed approach is tested and proved by simulation experiments.","PeriodicalId":305750,"journal":{"name":"2008 4th International IEEE Conference Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Volterra model predictive control of a lyophilization plant\",\"authors\":\"Yancho V. Todorov, Tsvetan D. Tsvetkov\",\"doi\":\"10.1109/IS.2008.4670467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lyophilization plants are widely used by pharmaceutical industries to produce stable dried medications and important preparations. Since, a Lyophilization cycle involves a high energy demands it is needed to be used an improved control strategy in order to minimize the operating costs. This paper describes a method for designing a nonlinear model predictive controller to be used in a Lyophilization plant. The controller is based on a truncated fuzzy-neural Volterra predictive model and a simplified gradient optimization algorithm. The proposed approach is studied to control the product temperature in a Lyophilization plant. The efficiency of the proposed approach is tested and proved by simulation experiments.\",\"PeriodicalId\":305750,\"journal\":{\"name\":\"2008 4th International IEEE Conference Intelligent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 4th International IEEE Conference Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS.2008.4670467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 4th International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2008.4670467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

冻干植物被制药工业广泛用于生产稳定的干燥药物和重要制剂。由于冻干循环涉及高能量需求,因此需要使用改进的控制策略以最大限度地降低操作成本。介绍了一种用于冻干装置的非线性模型预测控制器的设计方法。该控制器基于截断模糊神经Volterra预测模型和简化的梯度优化算法。研究了冻干装置中产品温度的控制方法。仿真实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Volterra model predictive control of a lyophilization plant
Lyophilization plants are widely used by pharmaceutical industries to produce stable dried medications and important preparations. Since, a Lyophilization cycle involves a high energy demands it is needed to be used an improved control strategy in order to minimize the operating costs. This paper describes a method for designing a nonlinear model predictive controller to be used in a Lyophilization plant. The controller is based on a truncated fuzzy-neural Volterra predictive model and a simplified gradient optimization algorithm. The proposed approach is studied to control the product temperature in a Lyophilization plant. The efficiency of the proposed approach is tested and proved by simulation experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy Neural Network for detecting nonlinear determinism in gastric electrical activity: Fractal dimension approach Clustering and sorting multi-attribute objects in multiset metric space Design of a context script language for developing context-aware applications in ubiquitous intelligent environment The software for 3D-viewing of educational topic maps Semantics-based information valuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1