Stephanie Abrecht, Lydia Gauerhof, C. Gladisch, K. Groh, Christian Heinzemann, M. Woehrle
{"title":"测试基于深度学习的自动驾驶视觉感知","authors":"Stephanie Abrecht, Lydia Gauerhof, C. Gladisch, K. Groh, Christian Heinzemann, M. Woehrle","doi":"10.1145/3450356","DOIUrl":null,"url":null,"abstract":"Due to the impressive performance of deep neural networks (DNNs) for visual perception, there is an increased demand for their use in automated systems. However, to use deep neural networks in practice, novel approaches are needed, e.g., for testing. In this work, we focus on the question of how to test deep learning-based visual perception functions for automated driving. Classical approaches for testing are not sufficient: A purely statistical approach based on a dataset split is not enough, as testing needs to address various purposes and not only average case performance. Additionally, a complete specification is elusive due to the complexity of the perception task in the open context of automated driving. In this article, we review and discuss existing work on testing DNNs for visual perception with a special focus on automated driving for test input and test oracle generation as well as test adequacy. We conclude that testing of DNNs in this domain requires several diverse test sets. We show how such tests sets can be constructed based on the presented approaches addressing different purposes based on the presented methods and identify open research questions.","PeriodicalId":380257,"journal":{"name":"ACM Transactions on Cyber-Physical Systems (TCPS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Testing Deep Learning-based Visual Perception for Automated Driving\",\"authors\":\"Stephanie Abrecht, Lydia Gauerhof, C. Gladisch, K. Groh, Christian Heinzemann, M. Woehrle\",\"doi\":\"10.1145/3450356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the impressive performance of deep neural networks (DNNs) for visual perception, there is an increased demand for their use in automated systems. However, to use deep neural networks in practice, novel approaches are needed, e.g., for testing. In this work, we focus on the question of how to test deep learning-based visual perception functions for automated driving. Classical approaches for testing are not sufficient: A purely statistical approach based on a dataset split is not enough, as testing needs to address various purposes and not only average case performance. Additionally, a complete specification is elusive due to the complexity of the perception task in the open context of automated driving. In this article, we review and discuss existing work on testing DNNs for visual perception with a special focus on automated driving for test input and test oracle generation as well as test adequacy. We conclude that testing of DNNs in this domain requires several diverse test sets. We show how such tests sets can be constructed based on the presented approaches addressing different purposes based on the presented methods and identify open research questions.\",\"PeriodicalId\":380257,\"journal\":{\"name\":\"ACM Transactions on Cyber-Physical Systems (TCPS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Cyber-Physical Systems (TCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3450356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems (TCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3450356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Testing Deep Learning-based Visual Perception for Automated Driving
Due to the impressive performance of deep neural networks (DNNs) for visual perception, there is an increased demand for their use in automated systems. However, to use deep neural networks in practice, novel approaches are needed, e.g., for testing. In this work, we focus on the question of how to test deep learning-based visual perception functions for automated driving. Classical approaches for testing are not sufficient: A purely statistical approach based on a dataset split is not enough, as testing needs to address various purposes and not only average case performance. Additionally, a complete specification is elusive due to the complexity of the perception task in the open context of automated driving. In this article, we review and discuss existing work on testing DNNs for visual perception with a special focus on automated driving for test input and test oracle generation as well as test adequacy. We conclude that testing of DNNs in this domain requires several diverse test sets. We show how such tests sets can be constructed based on the presented approaches addressing different purposes based on the presented methods and identify open research questions.