使用结构序列分析的手绘几何形状的自动分类

R. Guest, S. Chindaro, M. Fairhurst, J. Potter
{"title":"使用结构序列分析的手绘几何形状的自动分类","authors":"R. Guest, S. Chindaro, M. Fairhurst, J. Potter","doi":"10.1109/ICDAR.2003.1227808","DOIUrl":null,"url":null,"abstract":"A method for automatically assessing theconstructional sequence from a neuropsychologicaldrawing task using Hidden Markov Models is presented.We also present a method of extracting and identifyingthe position of individual pen strokes relating toindividual sides of a shape within a drawing to formtraining and testing sequences. Our results from twoexperiments using data from patients with visuo-spatialneglect show the HMM classifier is able to generalise onincorrectly extracted sequences and obtain a diagnosticclassification which can be used alongside other forms ofconventional assessment.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Automatic classification of hand drawn geometric shapes using constructional sequence analysis\",\"authors\":\"R. Guest, S. Chindaro, M. Fairhurst, J. Potter\",\"doi\":\"10.1109/ICDAR.2003.1227808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for automatically assessing theconstructional sequence from a neuropsychologicaldrawing task using Hidden Markov Models is presented.We also present a method of extracting and identifyingthe position of individual pen strokes relating toindividual sides of a shape within a drawing to formtraining and testing sequences. Our results from twoexperiments using data from patients with visuo-spatialneglect show the HMM classifier is able to generalise onincorrectly extracted sequences and obtain a diagnosticclassification which can be used alongside other forms ofconventional assessment.\",\"PeriodicalId\":249193,\"journal\":{\"name\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2003.1227808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种利用隐马尔可夫模型自动评估神经心理绘图任务的构造序列的方法。我们还提出了一种提取和识别与绘图中形状的各个侧面相关的单个笔画的位置的方法,以形成训练和测试序列。我们使用视觉空间忽视患者的数据进行的两个实验结果表明,HMM分类器能够对错误提取的序列进行泛化,并获得可与其他形式的常规评估一起使用的诊断分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic classification of hand drawn geometric shapes using constructional sequence analysis
A method for automatically assessing theconstructional sequence from a neuropsychologicaldrawing task using Hidden Markov Models is presented.We also present a method of extracting and identifyingthe position of individual pen strokes relating toindividual sides of a shape within a drawing to formtraining and testing sequences. Our results from twoexperiments using data from patients with visuo-spatialneglect show the HMM classifier is able to generalise onincorrectly extracted sequences and obtain a diagnosticclassification which can be used alongside other forms ofconventional assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of imperfect OCR on part-of-speech tagging Writer identification using innovative binarised features of handwritten numerals Word searching in CCITT group 4 compressed document images Exploiting reliability for dynamic selection of classi .ers by means of genetic algorithms Investigation of off-line Japanese signature verification using a pattern matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1