用MEG/EEG数据重建脑活动和脑源间功能连接的鲁棒方法

J. Owen, D. Wipf, H. Attias, K. Sekihara, S. Nagarajan
{"title":"用MEG/EEG数据重建脑活动和脑源间功能连接的鲁棒方法","authors":"J. Owen, D. Wipf, H. Attias, K. Sekihara, S. Nagarajan","doi":"10.1109/ISBI.2009.5193294","DOIUrl":null,"url":null,"abstract":"The synchronous brain activity measured via magentoencephalography (MEG) or electroencephalography (EEG) arises from current dipoles located throughout the cortex. The number, location, time-course, and orientation of these dipoles, called sources, are estimated using a source localization algorithm. Source localization remains a challenging task, one that is significantly compounded by the effects of source correlations and interference from spontaneous brain activity and sensor noise. Likewise, assessing the interactions between the individual sources, known as functional connectivity, is also confounded by noise and correlations in the sensor recordings. In addition, computational complexity has been an obstacle to computing functional connectivity. This paper derives an empirical Bayesian method for performing source localization with MEG and EEG data that includes noise and interference suppression. We demonstrate that this method surpasses standard methods of localization. In addition, we demonstrate that brain source activity inferred from this algorithm is better suited to uncover the interactions between brain areas.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust methods for reconstructing brain activity and functional connectivity between brain sourceswith MEG/EEG data\",\"authors\":\"J. Owen, D. Wipf, H. Attias, K. Sekihara, S. Nagarajan\",\"doi\":\"10.1109/ISBI.2009.5193294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synchronous brain activity measured via magentoencephalography (MEG) or electroencephalography (EEG) arises from current dipoles located throughout the cortex. The number, location, time-course, and orientation of these dipoles, called sources, are estimated using a source localization algorithm. Source localization remains a challenging task, one that is significantly compounded by the effects of source correlations and interference from spontaneous brain activity and sensor noise. Likewise, assessing the interactions between the individual sources, known as functional connectivity, is also confounded by noise and correlations in the sensor recordings. In addition, computational complexity has been an obstacle to computing functional connectivity. This paper derives an empirical Bayesian method for performing source localization with MEG and EEG data that includes noise and interference suppression. We demonstrate that this method surpasses standard methods of localization. In addition, we demonstrate that brain source activity inferred from this algorithm is better suited to uncover the interactions between brain areas.\",\"PeriodicalId\":272938,\"journal\":{\"name\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2009.5193294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

通过脑磁图(MEG)或脑电图(EEG)测量的同步脑活动源于位于整个皮层的电流偶极子。这些偶极子(称为源)的数量、位置、时间过程和方向是使用源定位算法估计的。声源定位仍然是一项具有挑战性的任务,声源相关性的影响以及自发脑活动和传感器噪声的干扰大大加剧了这一任务。同样,评估单个源之间的相互作用,即功能连接,也会被传感器记录中的噪声和相关性所混淆。此外,计算复杂性一直是计算功能连接的障碍。本文提出了一种经验贝叶斯方法对脑电信号和脑电信号进行源定位,包括噪声和干扰抑制。结果表明,该方法优于标准的定位方法。此外,我们证明了从该算法推断的脑源活动更适合于揭示脑区域之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust methods for reconstructing brain activity and functional connectivity between brain sourceswith MEG/EEG data
The synchronous brain activity measured via magentoencephalography (MEG) or electroencephalography (EEG) arises from current dipoles located throughout the cortex. The number, location, time-course, and orientation of these dipoles, called sources, are estimated using a source localization algorithm. Source localization remains a challenging task, one that is significantly compounded by the effects of source correlations and interference from spontaneous brain activity and sensor noise. Likewise, assessing the interactions between the individual sources, known as functional connectivity, is also confounded by noise and correlations in the sensor recordings. In addition, computational complexity has been an obstacle to computing functional connectivity. This paper derives an empirical Bayesian method for performing source localization with MEG and EEG data that includes noise and interference suppression. We demonstrate that this method surpasses standard methods of localization. In addition, we demonstrate that brain source activity inferred from this algorithm is better suited to uncover the interactions between brain areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic alignment of stacks of filament data Analysis of nerve activity and optical signals from mouse brain stem to identify cells generating respiratory rhythms Segmentation and classification of triple negative breast cancers using DCE-MRI Improved registration for large electron microscopy images Special purpose 3-D reconstruction and restoration algorithms for electron microscopy of nanoscale objects and an enabling software toolkit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1