低阶张量恢复的随机迭代硬阈值

Rachel Grotheer, S. Li, A. Ma, D. Needell, Jing Qin
{"title":"低阶张量恢复的随机迭代硬阈值","authors":"Rachel Grotheer, S. Li, A. Ma, D. Needell, Jing Qin","doi":"10.1109/ITA50056.2020.9244965","DOIUrl":null,"url":null,"abstract":"Low-rank tensor recovery problems have been widely studied in many signal processing and machine learning applications. Tensor rank is typically defined under certain tensor decomposition. In particular, Tucker decomposition is known as one of the most popular tensor decompositions. In recent years, researchers have developed many state-of-the-art algorithms to address the problem of low-Tucker-rank tensor recovery. Motivated by the favorable properties of the stochastic algorithms, such as stochastic gradient descent and stochastic iterative hard thresholding, we aim to extend the stochastic iterative hard thresholding algorithm from vectors to tensors in order to address the problem of recovering a low-Tucker-rank tensor from its linear measurements. We have also developed linear convergence analysis for the proposed method and conducted a series of experiments with both synthetic and real data to illustrate the performance of the proposed method.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stochastic Iterative Hard Thresholding for Low-Tucker-Rank Tensor Recovery\",\"authors\":\"Rachel Grotheer, S. Li, A. Ma, D. Needell, Jing Qin\",\"doi\":\"10.1109/ITA50056.2020.9244965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-rank tensor recovery problems have been widely studied in many signal processing and machine learning applications. Tensor rank is typically defined under certain tensor decomposition. In particular, Tucker decomposition is known as one of the most popular tensor decompositions. In recent years, researchers have developed many state-of-the-art algorithms to address the problem of low-Tucker-rank tensor recovery. Motivated by the favorable properties of the stochastic algorithms, such as stochastic gradient descent and stochastic iterative hard thresholding, we aim to extend the stochastic iterative hard thresholding algorithm from vectors to tensors in order to address the problem of recovering a low-Tucker-rank tensor from its linear measurements. We have also developed linear convergence analysis for the proposed method and conducted a series of experiments with both synthetic and real data to illustrate the performance of the proposed method.\",\"PeriodicalId\":137257,\"journal\":{\"name\":\"2020 Information Theory and Applications Workshop (ITA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA50056.2020.9244965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9244965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

低秩张量恢复问题在许多信号处理和机器学习应用中得到了广泛的研究。张量秩通常是在一定的张量分解下定义的。特别地,Tucker分解被认为是最流行的张量分解之一。近年来,研究人员开发了许多最先进的算法来解决低塔克秩张量恢复问题。基于随机梯度下降和随机迭代硬阈值等随机算法的优点,我们的目标是将随机迭代硬阈值算法从向量扩展到张量,以解决从线性测量中恢复低塔克秩张量的问题。我们还对所提出的方法进行了线性收敛分析,并对合成数据和实际数据进行了一系列实验,以说明所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic Iterative Hard Thresholding for Low-Tucker-Rank Tensor Recovery
Low-rank tensor recovery problems have been widely studied in many signal processing and machine learning applications. Tensor rank is typically defined under certain tensor decomposition. In particular, Tucker decomposition is known as one of the most popular tensor decompositions. In recent years, researchers have developed many state-of-the-art algorithms to address the problem of low-Tucker-rank tensor recovery. Motivated by the favorable properties of the stochastic algorithms, such as stochastic gradient descent and stochastic iterative hard thresholding, we aim to extend the stochastic iterative hard thresholding algorithm from vectors to tensors in order to address the problem of recovering a low-Tucker-rank tensor from its linear measurements. We have also developed linear convergence analysis for the proposed method and conducted a series of experiments with both synthetic and real data to illustrate the performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO is Very Useful for Pilot-Free Uplink Communications Simplified Ray Tracing for the Millimeter Wave Channel: A Performance Evaluation On Marton's Achievable Region: Local Tensorization for Product Channels with a Binary Component Improve Robustness of Deep Neural Networks by Coding On Nonnegative CP Tensor Decomposition Robustness to Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1