{"title":"REKONSTRUKCJA NIEKOMPLETNYCH OBRAZÓW ZA POMOCĄ METOD APROKSYMACJI MODELAMI NISKIEGO RZĘDU","authors":"T. Sadowski, Rafał Zdunek","doi":"10.5604/01.3001.0010.7259","DOIUrl":null,"url":null,"abstract":". The paper is concerned with the task of reconstructing missing pixels in images perturbed with impulse noise in a transmission channel. Such a task can be formulated in the context of image interpolation on an irregular grid or by approximating an incomplete image by low-rank factor decomposition models. We compared four algorithms that are based on the low-rank decomposition model: SVT, SmNMF-MC , FCSA-TC and SPC-QV. The numerical experiments are carried out for various cases of incomplete images, obtained by removing random pixels or regular grid lines from test images. The best performance is obtained if nonnegativity and smoothing constraints are imposed onto the estimated low-rank factors.","PeriodicalId":142227,"journal":{"name":"Informatics, Control, Measurement in Economy and Environment Protection","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics, Control, Measurement in Economy and Environment Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0010.7259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 研究了在传输信道中受脉冲噪声干扰的图像中缺失像素的重建问题。这样的任务可以在不规则网格上的图像插值或通过低秩因子分解模型近似不完整图像的背景下制定。我们比较了四种基于低秩分解模型的算法:SVT、SmNMF-MC、ffcsa - tc和SPC-QV。对各种不完全图像进行了数值实验,这些不完全图像是通过从测试图像中去除随机像素或规则网格线获得的。如果对估计的低秩因子施加非负性和平滑约束,则可以获得最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
REKONSTRUKCJA NIEKOMPLETNYCH OBRAZÓW ZA POMOCĄ METOD APROKSYMACJI MODELAMI NISKIEGO RZĘDU
. The paper is concerned with the task of reconstructing missing pixels in images perturbed with impulse noise in a transmission channel. Such a task can be formulated in the context of image interpolation on an irregular grid or by approximating an incomplete image by low-rank factor decomposition models. We compared four algorithms that are based on the low-rank decomposition model: SVT, SmNMF-MC , FCSA-TC and SPC-QV. The numerical experiments are carried out for various cases of incomplete images, obtained by removing random pixels or regular grid lines from test images. The best performance is obtained if nonnegativity and smoothing constraints are imposed onto the estimated low-rank factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Imitation modeling of the routing process based on fuzzy logic SPECTRAL SENSITIVITY OF HUMAN VISION TO THE LIGHT PULSES Peculiarities of the radio signals and hindrances in the navigation system of the remote-piloted vehicles Generalized approach to Hurst exponent estimating by time series DETERMINATION OF THE EFFICIENCY FACTORS OF THE ABSORPTION AND SCATTERING OF NICKEL NANOPARTICLES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1