植物叶片的实时渲染

Lifeng Wang, Wenle Wang, Julie Dorsey, Xu Yang, B. Guo, H. Shum
{"title":"植物叶片的实时渲染","authors":"Lifeng Wang, Wenle Wang, Julie Dorsey, Xu Yang, B. Guo, H. Shum","doi":"10.1145/1186822.1073252","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for the real-time rendering of plant leaves with global illumination effects. Realistic rendering of leaves requires a sophisticated appearance model and accurate lighting computation. For leaf appearance we introduce a parametric model that describes leaves in terms of spatially-variant BRDFs and BTDFs. These BRDFs and BTDFs, incorporating analysis of subsurface scattering inside leaf tissues and rough surface scattering on leaf surfaces, can be measured from real leaves. More importantly, this description is compact and can be loaded into graphics hardware for fast run-time shading calculations, which are essential for achieving high frame rates. For lighting computation, we present an algorithm that extends the Precomputed Radiance Transfer (PRT) approach to all-frequency lighting for leaves. In particular, we handle the combined illumination effects due to low-frequency environment light and high-frequency sunlight. This is done by decomposing the local incident radiance of sunlight into direct and indirect components. The direct component, which contains most of the high frequencies, is not pre-computed with spherical harmonics as in PRT; instead it is evaluated on-the-fly using pre-computed light-visibility convolution data. We demonstrate our framework by the rendering of a variety of leaves and assemblies thereof.","PeriodicalId":211118,"journal":{"name":"ACM SIGGRAPH 2005 Papers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Real-time rendering of plant leaves\",\"authors\":\"Lifeng Wang, Wenle Wang, Julie Dorsey, Xu Yang, B. Guo, H. Shum\",\"doi\":\"10.1145/1186822.1073252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a framework for the real-time rendering of plant leaves with global illumination effects. Realistic rendering of leaves requires a sophisticated appearance model and accurate lighting computation. For leaf appearance we introduce a parametric model that describes leaves in terms of spatially-variant BRDFs and BTDFs. These BRDFs and BTDFs, incorporating analysis of subsurface scattering inside leaf tissues and rough surface scattering on leaf surfaces, can be measured from real leaves. More importantly, this description is compact and can be loaded into graphics hardware for fast run-time shading calculations, which are essential for achieving high frame rates. For lighting computation, we present an algorithm that extends the Precomputed Radiance Transfer (PRT) approach to all-frequency lighting for leaves. In particular, we handle the combined illumination effects due to low-frequency environment light and high-frequency sunlight. This is done by decomposing the local incident radiance of sunlight into direct and indirect components. The direct component, which contains most of the high frequencies, is not pre-computed with spherical harmonics as in PRT; instead it is evaluated on-the-fly using pre-computed light-visibility convolution data. We demonstrate our framework by the rendering of a variety of leaves and assemblies thereof.\",\"PeriodicalId\":211118,\"journal\":{\"name\":\"ACM SIGGRAPH 2005 Papers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2005 Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1186822.1073252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2005 Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1186822.1073252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

提出了一种具有全局光照效果的植物叶片实时渲染框架。树叶的逼真渲染需要复杂的外观模型和精确的光照计算。对于叶片外观,我们引入了一个参数化模型,该模型根据空间变化的brdf和btdf来描述叶片。这些brdf和btdf结合了叶片组织内部的亚表面散射和叶片表面的粗糙表面散射分析,可以在真实叶片上测量。更重要的是,这个描述是紧凑的,可以加载到图形硬件快速运行时的阴影计算,这是实现高帧率必不可少的。对于照明计算,我们提出了一种算法,将预计算亮度传输(PRT)方法扩展到树叶的全频率照明。特别地,我们处理了由于低频环境光和高频阳光的组合照明效果。这是通过将太阳光的局部入射辐射分解成直接和间接分量来完成的。直接分量包含了大部分的高频,不像在PRT中那样用球谐波预先计算;相反,它是使用预先计算的光可见性卷积数据实时评估的。我们通过渲染各种叶子及其组件来演示我们的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time rendering of plant leaves
This paper presents a framework for the real-time rendering of plant leaves with global illumination effects. Realistic rendering of leaves requires a sophisticated appearance model and accurate lighting computation. For leaf appearance we introduce a parametric model that describes leaves in terms of spatially-variant BRDFs and BTDFs. These BRDFs and BTDFs, incorporating analysis of subsurface scattering inside leaf tissues and rough surface scattering on leaf surfaces, can be measured from real leaves. More importantly, this description is compact and can be loaded into graphics hardware for fast run-time shading calculations, which are essential for achieving high frame rates. For lighting computation, we present an algorithm that extends the Precomputed Radiance Transfer (PRT) approach to all-frequency lighting for leaves. In particular, we handle the combined illumination effects due to low-frequency environment light and high-frequency sunlight. This is done by decomposing the local incident radiance of sunlight into direct and indirect components. The direct component, which contains most of the high frequencies, is not pre-computed with spherical harmonics as in PRT; instead it is evaluated on-the-fly using pre-computed light-visibility convolution data. We demonstrate our framework by the rendering of a variety of leaves and assemblies thereof.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: I3D (symposium on interactive 3D graphics) Session details: Mesh manipulation Session details: Texture synthesis Session details: Precomputed light transport Session details: Hardware rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1