ACT-SAGAN:基于自关注生成对抗网络的Kafka自动配置调优

Yating Huang, Chunhai Li, Mingfeng Chen, Zhaoyu Su
{"title":"ACT-SAGAN:基于自关注生成对抗网络的Kafka自动配置调优","authors":"Yating Huang, Chunhai Li, Mingfeng Chen, Zhaoyu Su","doi":"10.1145/3569966.3570024","DOIUrl":null,"url":null,"abstract":"When Kafka is used in production environments, a large number of parameters are provided to facilitate user configuration for specific application environments in order to obtain better performance. However, configuring Kafka's parameters requires in-depth knowledge of the user, which is far beyond the ability of the average user and prevents Kafka from obtaining better performance. To address this problem, we propose an ACT-SAGAN method that adds a self-attention mechanism to the generative adversarial network model to capture the associations between hidden structures in good configuration combinations and configuration parameters, which uses these hidden structures and associations to generate better configuration combinations to improve Kafka's performance. Experimental results show that the algorithm improves Kafka's throughput and reduces latency after deployment for the configuration combinations generated by Kafka.","PeriodicalId":145580,"journal":{"name":"Proceedings of the 5th International Conference on Computer Science and Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ACT-SAGAN: Automatic Configuration Tuning for Kafka with Self-Attention Generative Adversarial Networks\",\"authors\":\"Yating Huang, Chunhai Li, Mingfeng Chen, Zhaoyu Su\",\"doi\":\"10.1145/3569966.3570024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When Kafka is used in production environments, a large number of parameters are provided to facilitate user configuration for specific application environments in order to obtain better performance. However, configuring Kafka's parameters requires in-depth knowledge of the user, which is far beyond the ability of the average user and prevents Kafka from obtaining better performance. To address this problem, we propose an ACT-SAGAN method that adds a self-attention mechanism to the generative adversarial network model to capture the associations between hidden structures in good configuration combinations and configuration parameters, which uses these hidden structures and associations to generate better configuration combinations to improve Kafka's performance. Experimental results show that the algorithm improves Kafka's throughput and reduces latency after deployment for the configuration combinations generated by Kafka.\",\"PeriodicalId\":145580,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Computer Science and Software Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Computer Science and Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3569966.3570024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Computer Science and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569966.3570024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在生产环境中使用Kafka时,为了获得更好的性能,提供了大量的参数,方便用户针对特定的应用环境进行配置。然而,配置Kafka的参数需要对用户有深入的了解,这远远超出了普通用户的能力,也阻碍了Kafka获得更好的性能。为了解决这个问题,我们提出了一种ACT-SAGAN方法,该方法在生成对抗网络模型中添加了自关注机制,以捕获良好配置组合和配置参数中隐藏结构之间的关联,并使用这些隐藏结构和关联来生成更好的配置组合,以提高Kafka的性能。实验结果表明,对于Kafka生成的配置组合,该算法提高了Kafka的吞吐量,减少了部署后的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ACT-SAGAN: Automatic Configuration Tuning for Kafka with Self-Attention Generative Adversarial Networks
When Kafka is used in production environments, a large number of parameters are provided to facilitate user configuration for specific application environments in order to obtain better performance. However, configuring Kafka's parameters requires in-depth knowledge of the user, which is far beyond the ability of the average user and prevents Kafka from obtaining better performance. To address this problem, we propose an ACT-SAGAN method that adds a self-attention mechanism to the generative adversarial network model to capture the associations between hidden structures in good configuration combinations and configuration parameters, which uses these hidden structures and associations to generate better configuration combinations to improve Kafka's performance. Experimental results show that the algorithm improves Kafka's throughput and reduces latency after deployment for the configuration combinations generated by Kafka.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accurate and Time-saving Deepfake Detection in Multi-face Scenarios Using Combined Features The Exponential Dynamic Analysis of Network Attention Based on Big Data Research on Data Governance and Data Migration based on Oracle Database Appliance in campus Research on Conformance Engineering process of Airborne Software quality Assurance in Civil Aviation Extending Take-Grant Model for More Flexible Privilege Propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1