通过基于值的过载处理和任务迁移增强时间触发调度

Jan Carlson, T. Lennvall, G. Fohler
{"title":"通过基于值的过载处理和任务迁移增强时间触发调度","authors":"Jan Carlson, T. Lennvall, G. Fohler","doi":"10.1109/ISORC.2003.1199244","DOIUrl":null,"url":null,"abstract":"Time triggered methods provide deterministic behaviour suitable for critical real-time systems. The), perform less favourably, however if the arrival times of some activities are not known in advance, in particular if overload situations have to be anticipated. In many systems, the criticality of only a subset of activities justify the cost associated with the time triggered methods. In this paper we consider distributed systems where a subset of critical activities are handled in a time triggered fashion, via an offline schedule. At runtime, the arrival of aperiodic tasks may cause overload that demands to be handled in such a way that i) time triggered activities still meet all their original constraints, ii) execution of high-valued tasks are prioritised over tasks with lower value, iii) tasks can be quickly migrated to balance the overall system load. We give a precise formulation of overload detection and value based task rejection in the presence of offline scheduled tasks, and present a heuristic algorithm to handle overload. To benefit from the distributed setting, the overload handling includes an algorithm that integrates migration of rejected tasks with resource reclaiming and an acceptance test of newly arrived tasks. Simulation results underline the effectiveness of the presented approach.","PeriodicalId":204411,"journal":{"name":"Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, 2003.","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Enhancing time triggered scheduling with value based overload handling and task migration\",\"authors\":\"Jan Carlson, T. Lennvall, G. Fohler\",\"doi\":\"10.1109/ISORC.2003.1199244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time triggered methods provide deterministic behaviour suitable for critical real-time systems. The), perform less favourably, however if the arrival times of some activities are not known in advance, in particular if overload situations have to be anticipated. In many systems, the criticality of only a subset of activities justify the cost associated with the time triggered methods. In this paper we consider distributed systems where a subset of critical activities are handled in a time triggered fashion, via an offline schedule. At runtime, the arrival of aperiodic tasks may cause overload that demands to be handled in such a way that i) time triggered activities still meet all their original constraints, ii) execution of high-valued tasks are prioritised over tasks with lower value, iii) tasks can be quickly migrated to balance the overall system load. We give a precise formulation of overload detection and value based task rejection in the presence of offline scheduled tasks, and present a heuristic algorithm to handle overload. To benefit from the distributed setting, the overload handling includes an algorithm that integrates migration of rejected tasks with resource reclaiming and an acceptance test of newly arrived tasks. Simulation results underline the effectiveness of the presented approach.\",\"PeriodicalId\":204411,\"journal\":{\"name\":\"Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, 2003.\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORC.2003.1199244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2003.1199244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

时间触发方法提供了适合于关键实时系统的确定性行为。但是,如果不能提前知道某些活动的到达时间,特别是必须预计超载情况,则表现不佳。在许多系统中,只有一小部分活动的重要性证明了与时间触发方法相关的成本是合理的。在本文中,我们考虑分布式系统,其中关键活动的子集通过离线调度以时间触发的方式处理。在运行时,非周期性任务的到来可能会导致过载,需要以这样的方式处理:1)时间触发的活动仍然满足其所有原始约束,2)高值任务的执行优先于低值任务,3)任务可以快速迁移以平衡整体系统负载。在离线调度任务存在的情况下,给出了过载检测和基于值的任务拒绝的精确公式,并提出了一种处理过载的启发式算法。为了从分布式设置中获益,过载处理包括一种算法,该算法将被拒绝任务的迁移与资源回收和新到达任务的验收测试集成在一起。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing time triggered scheduling with value based overload handling and task migration
Time triggered methods provide deterministic behaviour suitable for critical real-time systems. The), perform less favourably, however if the arrival times of some activities are not known in advance, in particular if overload situations have to be anticipated. In many systems, the criticality of only a subset of activities justify the cost associated with the time triggered methods. In this paper we consider distributed systems where a subset of critical activities are handled in a time triggered fashion, via an offline schedule. At runtime, the arrival of aperiodic tasks may cause overload that demands to be handled in such a way that i) time triggered activities still meet all their original constraints, ii) execution of high-valued tasks are prioritised over tasks with lower value, iii) tasks can be quickly migrated to balance the overall system load. We give a precise formulation of overload detection and value based task rejection in the presence of offline scheduled tasks, and present a heuristic algorithm to handle overload. To benefit from the distributed setting, the overload handling includes an algorithm that integrates migration of rejected tasks with resource reclaiming and an acceptance test of newly arrived tasks. Simulation results underline the effectiveness of the presented approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-driven development of real-time software using OMG standards Issues with object orientation in verifying safety-critical systems Probabilistic simulation-based analysis of complex real-time systems VisiTrack - video based incremental tracking in real time Implication of embedded Linux in Japanese embedded industries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1