支持向量机和神经网络作为肿瘤基因分析的标记选择器

M. Blazadonakis, M. Zervakis, M. Kounelakis, E. Biganzoli, Nicola Lama
{"title":"支持向量机和神经网络作为肿瘤基因分析的标记选择器","authors":"M. Blazadonakis, M. Zervakis, M. Kounelakis, E. Biganzoli, Nicola Lama","doi":"10.1109/IS.2006.348492","DOIUrl":null,"url":null,"abstract":"DNA micro-array analysis allows us to study the expression level of thousands of genes simultaneously on a single experiment. The problem of marker selection has been extensively studied but in this paper we also consider the quality of the selected markers. Thus, we address the problem of selecting a small subset of genes that would be adequate enough to discriminate between the two classes of interest in classification, while preserving self-similar characteristics to allow closed clustering within each class","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Support Vector Machines and Neural Networks as Marker Selectors for Cancer Gene Analysis\",\"authors\":\"M. Blazadonakis, M. Zervakis, M. Kounelakis, E. Biganzoli, Nicola Lama\",\"doi\":\"10.1109/IS.2006.348492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA micro-array analysis allows us to study the expression level of thousands of genes simultaneously on a single experiment. The problem of marker selection has been extensively studied but in this paper we also consider the quality of the selected markers. Thus, we address the problem of selecting a small subset of genes that would be adequate enough to discriminate between the two classes of interest in classification, while preserving self-similar characteristics to allow closed clustering within each class\",\"PeriodicalId\":116809,\"journal\":{\"name\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS.2006.348492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

DNA微阵列分析使我们能够在单个实验中同时研究数千个基因的表达水平。标记选择问题已经得到了广泛的研究,但在本文中我们也考虑了所选标记的质量。因此,我们解决了选择一个小的基因子集的问题,这些基因子集足以在分类中区分两个感兴趣的类别,同时保留自相似特征以允许每个类别内的封闭聚类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Support Vector Machines and Neural Networks as Marker Selectors for Cancer Gene Analysis
DNA micro-array analysis allows us to study the expression level of thousands of genes simultaneously on a single experiment. The problem of marker selection has been extensively studied but in this paper we also consider the quality of the selected markers. Thus, we address the problem of selecting a small subset of genes that would be adequate enough to discriminate between the two classes of interest in classification, while preserving self-similar characteristics to allow closed clustering within each class
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Neurofuzzy Adaptive Kalman Filter Artificial Intelligence Technique for Gene Expression Profiling of Urinary Bladder Cancer Evolutionary Support Vector Machines for Diabetes Mellitus Diagnosis IGUANA: Individuation of Global Unsafe ANomalies and Alarm activation Smart Data Analysis Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1