离散小波变换与支持向量机在病理语音信号识别中的应用

E. Fonseca, R. Guido, Andre C. Silvestre, J. Pereira
{"title":"离散小波变换与支持向量机在病理语音信号识别中的应用","authors":"E. Fonseca, R. Guido, Andre C. Silvestre, J. Pereira","doi":"10.1109/ISM.2005.50","DOIUrl":null,"url":null,"abstract":"An algorithm able to classify pathological and normal voice signals based on Daubechies discrete wavelet transform (DWT-db) and support vector machines (SVM) classifier is presented. DWT-db is used for time-frequency analysis giving quantitative evaluation of signal characteristics to identify pathologies in voice signals, particularly nodules in vocal folds, of subjects with different ages for both male and female. After using a linear prediction coefficients (LPC) filter, the signals mean square values of a particular scale from wavelet analysis are entries to a nonlinear least square support vector machine (LS-SVM) classifier, which leads to an adequate larynx pathology classifier which over 95% of classification accuracy.","PeriodicalId":322363,"journal":{"name":"Seventh IEEE International Symposium on Multimedia (ISM'05)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Discrete wavelet transform and support vector machine applied to pathological voice signals identification\",\"authors\":\"E. Fonseca, R. Guido, Andre C. Silvestre, J. Pereira\",\"doi\":\"10.1109/ISM.2005.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm able to classify pathological and normal voice signals based on Daubechies discrete wavelet transform (DWT-db) and support vector machines (SVM) classifier is presented. DWT-db is used for time-frequency analysis giving quantitative evaluation of signal characteristics to identify pathologies in voice signals, particularly nodules in vocal folds, of subjects with different ages for both male and female. After using a linear prediction coefficients (LPC) filter, the signals mean square values of a particular scale from wavelet analysis are entries to a nonlinear least square support vector machine (LS-SVM) classifier, which leads to an adequate larynx pathology classifier which over 95% of classification accuracy.\",\"PeriodicalId\":322363,\"journal\":{\"name\":\"Seventh IEEE International Symposium on Multimedia (ISM'05)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Symposium on Multimedia (ISM'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2005.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Symposium on Multimedia (ISM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2005.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

提出了一种基于多贝西离散小波变换(DWT-db)和支持向量机(SVM)分类器的病理和正常语音信号分类算法。DWT-db用于时频分析,对信号特征进行定量评估,以识别不同年龄男性和女性受试者的语音信号病理,特别是声带结节。采用线性预测系数(LPC)滤波后,将小波分析得到的特定尺度的信号均方值输入到非线性最小二乘支持向量机(LS-SVM)分类器中,得到的喉部病理分类器的分类准确率达到95%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discrete wavelet transform and support vector machine applied to pathological voice signals identification
An algorithm able to classify pathological and normal voice signals based on Daubechies discrete wavelet transform (DWT-db) and support vector machines (SVM) classifier is presented. DWT-db is used for time-frequency analysis giving quantitative evaluation of signal characteristics to identify pathologies in voice signals, particularly nodules in vocal folds, of subjects with different ages for both male and female. After using a linear prediction coefficients (LPC) filter, the signals mean square values of a particular scale from wavelet analysis are entries to a nonlinear least square support vector machine (LS-SVM) classifier, which leads to an adequate larynx pathology classifier which over 95% of classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supporting low-cost video-on-demand in heterogeneous peer-to-peer networks Striping delay-sensitive packets over multiple burst-loss channels with random delays An ontology learning method enhanced by frame semantics BIOGLYPH: biometric identification in pervasive environments Key distributions as musical fingerprints for similarity assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1