基于行为分析的生成神经网络增强Android变形恶意软件检测

Leigh Turnbull, Zhiyuan Tan, Kehinde O. Babaagba
{"title":"基于行为分析的生成神经网络增强Android变形恶意软件检测","authors":"Leigh Turnbull, Zhiyuan Tan, Kehinde O. Babaagba","doi":"10.1109/DSC54232.2022.9888906","DOIUrl":null,"url":null,"abstract":"Malicious software trends show a persistent yearly increase in volume and cost impact. More than 350,000 new malicious or unwanted programs that target various technologies were registered daily over the past year. Metamorphic malware is a specifically dangerous group of malicious software that perturbs its structure between generations. Detecting these types of malware, thus, appear to be more challenging. Recent research demonstrates that Machine Learning (ML) techniques outper-form traditional methods in detecting known and uncategorised malware variants. Hence, this research aims to investigate the use of ML, a Generative Neural Network specifically, for enhancing metamorphic malware detection in Android (the most popular mobile operating system) via augmenting training data. The results show the augmented training data, containing novel samples derived from Deep Convolutional Generative Adversarial Network (DCGAN) and features from metamorphic malware samples, improves the detection performance of unseen meta-morphic malware.","PeriodicalId":368903,"journal":{"name":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Generative Neural Network for Enhancing Android Metamorphic Malware Detection based on Behaviour Profiling\",\"authors\":\"Leigh Turnbull, Zhiyuan Tan, Kehinde O. Babaagba\",\"doi\":\"10.1109/DSC54232.2022.9888906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malicious software trends show a persistent yearly increase in volume and cost impact. More than 350,000 new malicious or unwanted programs that target various technologies were registered daily over the past year. Metamorphic malware is a specifically dangerous group of malicious software that perturbs its structure between generations. Detecting these types of malware, thus, appear to be more challenging. Recent research demonstrates that Machine Learning (ML) techniques outper-form traditional methods in detecting known and uncategorised malware variants. Hence, this research aims to investigate the use of ML, a Generative Neural Network specifically, for enhancing metamorphic malware detection in Android (the most popular mobile operating system) via augmenting training data. The results show the augmented training data, containing novel samples derived from Deep Convolutional Generative Adversarial Network (DCGAN) and features from metamorphic malware samples, improves the detection performance of unseen meta-morphic malware.\",\"PeriodicalId\":368903,\"journal\":{\"name\":\"2022 IEEE Conference on Dependable and Secure Computing (DSC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Conference on Dependable and Secure Computing (DSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSC54232.2022.9888906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC54232.2022.9888906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

恶意软件的数量和成本影响呈逐年持续增长的趋势。在过去的一年里,每天都有超过35万个新的针对各种技术的恶意程序被注册。变形恶意软件是一种特别危险的恶意软件,它会在几代之间扰乱其结构。因此,检测这些类型的恶意软件似乎更具挑战性。最近的研究表明,机器学习(ML)技术在检测已知和未分类的恶意软件变体方面优于传统方法。因此,本研究旨在研究ML的使用,特别是生成神经网络,通过增强训练数据来增强Android(最流行的移动操作系统)中的变形恶意软件检测。结果表明,基于深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network, DCGAN)的新样本和变形恶意软件样本特征的增强训练数据提高了未见元形态恶意软件的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Generative Neural Network for Enhancing Android Metamorphic Malware Detection based on Behaviour Profiling
Malicious software trends show a persistent yearly increase in volume and cost impact. More than 350,000 new malicious or unwanted programs that target various technologies were registered daily over the past year. Metamorphic malware is a specifically dangerous group of malicious software that perturbs its structure between generations. Detecting these types of malware, thus, appear to be more challenging. Recent research demonstrates that Machine Learning (ML) techniques outper-form traditional methods in detecting known and uncategorised malware variants. Hence, this research aims to investigate the use of ML, a Generative Neural Network specifically, for enhancing metamorphic malware detection in Android (the most popular mobile operating system) via augmenting training data. The results show the augmented training data, containing novel samples derived from Deep Convolutional Generative Adversarial Network (DCGAN) and features from metamorphic malware samples, improves the detection performance of unseen meta-morphic malware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Symbolon: Enabling Flexible Multi-device-based User Authentication A Survey on Explainable Anomaly Detection for Industrial Internet of Things Optimising user security recommendations for AI-powered smart-homes A Scary Peek into The Future: Advanced Persistent Threats in Emerging Computing Environments LAEG: Leak-based AEG using Dynamic Binary Analysis to Defeat ASLR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1