基于遗传算法的一类神经网络传递函数优化方法

M. Beddoes, R. Ward
{"title":"基于遗传算法的一类神经网络传递函数优化方法","authors":"M. Beddoes, R. Ward","doi":"10.1109/ICDSP.2002.1028345","DOIUrl":null,"url":null,"abstract":"This paper proposes a hybrid of two methods to determine the weight-constants in a class of artificial neuron networks, ANNs. The class of ANNs we are interested in are characterized by feed-forward processing elements. One of the methods is the genetic algorithm, GA; the other is \"training through\" back-propagation of the error, BPE. We expect our hybrid scheme to be faster than using BPE alone.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A possible genetic-algorithm based method for optimizing a class of ANN transfer functions\",\"authors\":\"M. Beddoes, R. Ward\",\"doi\":\"10.1109/ICDSP.2002.1028345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a hybrid of two methods to determine the weight-constants in a class of artificial neuron networks, ANNs. The class of ANNs we are interested in are characterized by feed-forward processing elements. One of the methods is the genetic algorithm, GA; the other is \\\"training through\\\" back-propagation of the error, BPE. We expect our hybrid scheme to be faster than using BPE alone.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种混合的两种方法来确定一类人工神经元网络的权重常数。我们感兴趣的一类人工神经网络具有前馈处理元素的特征。其中一种方法是遗传算法(GA);另一种是通过误差的反向传播(BPE)进行“训练”。我们希望我们的混合方案比单独使用BPE更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A possible genetic-algorithm based method for optimizing a class of ANN transfer functions
This paper proposes a hybrid of two methods to determine the weight-constants in a class of artificial neuron networks, ANNs. The class of ANNs we are interested in are characterized by feed-forward processing elements. One of the methods is the genetic algorithm, GA; the other is "training through" back-propagation of the error, BPE. We expect our hybrid scheme to be faster than using BPE alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
H/sub /spl infin// bounded optimal updating - down-dating algorithm A systematic approach to seizure prediction using genetic and classifier based feature selection A prognostic-classification system based on a probabilistic NN for predicting urine bladder cancer recurrence Implementation of real-time AMDF pitch-detection for voice gender normalisation Fourier filtering of continuous global surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1