基于共同进化的乐观参与副教授的绩效评估

Ridwansyah Ridwansyah, Indah Ariyati, Siti Faizah
{"title":"基于共同进化的乐观参与副教授的绩效评估","authors":"Ridwansyah Ridwansyah, Indah Ariyati, Siti Faizah","doi":"10.33020/SAINTEKOM.V9I2.96","DOIUrl":null,"url":null,"abstract":"Assessment of the performance of the teaching assistant as a form of real behavior displayed by each assistant as a work achievement is carried out every year. The evaluation parameters of lecturer assistant performance are taken from the UCI Machine Repository where these parameters are English speakers, course instructors, courses, summer or regular semesters and class sizes. The evaluation process requires a model as the best feature selection, in this case we propose a co-evolutionary particle swarm optimization method to improve the accuracy of the mechine vector supprot method. Testing the dataset using the Rapid Miner software of various validation criteria starting from the accuracy test, precission test, recall test and then presented in the AUC curve.  The results of the development of co-evolution based mechine vector-particle swarm optimization methods provide good classification and increase the validation value so that it can be used as a periodic control in evaluating the performance of the teaching assistant.","PeriodicalId":359182,"journal":{"name":"Jurnal SAINTEKOM","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PARTICLE SWARM OPTIMIZATION BERBASIS CO-EVOLUSIONER DALAM EVALUASI KINERJA ASISTEN DOSEN\",\"authors\":\"Ridwansyah Ridwansyah, Indah Ariyati, Siti Faizah\",\"doi\":\"10.33020/SAINTEKOM.V9I2.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessment of the performance of the teaching assistant as a form of real behavior displayed by each assistant as a work achievement is carried out every year. The evaluation parameters of lecturer assistant performance are taken from the UCI Machine Repository where these parameters are English speakers, course instructors, courses, summer or regular semesters and class sizes. The evaluation process requires a model as the best feature selection, in this case we propose a co-evolutionary particle swarm optimization method to improve the accuracy of the mechine vector supprot method. Testing the dataset using the Rapid Miner software of various validation criteria starting from the accuracy test, precission test, recall test and then presented in the AUC curve.  The results of the development of co-evolution based mechine vector-particle swarm optimization methods provide good classification and increase the validation value so that it can be used as a periodic control in evaluating the performance of the teaching assistant.\",\"PeriodicalId\":359182,\"journal\":{\"name\":\"Jurnal SAINTEKOM\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal SAINTEKOM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33020/SAINTEKOM.V9I2.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal SAINTEKOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33020/SAINTEKOM.V9I2.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对助教的绩效考核作为助教作为工作成果所展示的真实行为形式,每年进行一次。讲师助理表现的评估参数取自UCI机器存储库,其中这些参数是英语使用者、课程讲师、课程、夏季或常规学期和班级规模。评估过程需要一个模型作为最佳特征选择,在这种情况下,我们提出了一种协同进化粒子群优化方法来提高机器向量支持方法的准确性。使用Rapid Miner软件对数据集进行测试,从准确度测试、精密度测试、召回率测试开始,然后在AUC曲线中给出各种验证标准。基于协同进化的机器向量粒子群优化方法的发展结果提供了良好的分类和提高的验证值,使其可以作为评估助教性能的周期性控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PARTICLE SWARM OPTIMIZATION BERBASIS CO-EVOLUSIONER DALAM EVALUASI KINERJA ASISTEN DOSEN
Assessment of the performance of the teaching assistant as a form of real behavior displayed by each assistant as a work achievement is carried out every year. The evaluation parameters of lecturer assistant performance are taken from the UCI Machine Repository where these parameters are English speakers, course instructors, courses, summer or regular semesters and class sizes. The evaluation process requires a model as the best feature selection, in this case we propose a co-evolutionary particle swarm optimization method to improve the accuracy of the mechine vector supprot method. Testing the dataset using the Rapid Miner software of various validation criteria starting from the accuracy test, precission test, recall test and then presented in the AUC curve.  The results of the development of co-evolution based mechine vector-particle swarm optimization methods provide good classification and increase the validation value so that it can be used as a periodic control in evaluating the performance of the teaching assistant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Penerapan Algoritma K-Means untuk Klasterisasi Produksi Budidaya Perikanan Provinsi Sulawesi Utara Implementasi Aplikasi Laporjalanku untuk Pemetaan dan Pelaporan Jalan Rusak di Wilayah Kota Tarakan Pengukuran Kematangan Keamanan Siber pada Perusahaan Teknologi Informasi dengan Framework Center for Internet Security Controls Klasifikasi Sentimen Terhadap Kualitas Aplikasi Bahan Ajar Digital Akademik Universitas Terbuka di Google Play Evaluasi Keamanan Teknologi Informasi Menggunakan Indeks Keamanan Informasi 5.0 dan ISO/EIC 27001:2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1