{"title":"独立存储设备上具有高度分散元数据的文件系统可扩展性","authors":"P. Lensing, Toni Cortes, J. Hughes, A. Brinkmann","doi":"10.1109/CCGrid.2016.28","DOIUrl":null,"url":null,"abstract":"This paper discusses using hard drives that integrate a key-value interface and network access in the actual drive hardware (Kinetic storage platform) to supply file system functionality in a large scale environment. Taking advantage of higher-level functionality to handle metadata on the drives themselves, a serverless system architecture is proposed. Skipping path component traversal during the lookup operation is the key technique discussed in this paper to avoid performance degradation with highly decentralized metadata. Scalability implications are reviewed based on a fuse file system implementation.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"File System Scalability with Highly Decentralized Metadata on Independent Storage Devices\",\"authors\":\"P. Lensing, Toni Cortes, J. Hughes, A. Brinkmann\",\"doi\":\"10.1109/CCGrid.2016.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses using hard drives that integrate a key-value interface and network access in the actual drive hardware (Kinetic storage platform) to supply file system functionality in a large scale environment. Taking advantage of higher-level functionality to handle metadata on the drives themselves, a serverless system architecture is proposed. Skipping path component traversal during the lookup operation is the key technique discussed in this paper to avoid performance degradation with highly decentralized metadata. Scalability implications are reviewed based on a fuse file system implementation.\",\"PeriodicalId\":103641,\"journal\":{\"name\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2016.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
File System Scalability with Highly Decentralized Metadata on Independent Storage Devices
This paper discusses using hard drives that integrate a key-value interface and network access in the actual drive hardware (Kinetic storage platform) to supply file system functionality in a large scale environment. Taking advantage of higher-level functionality to handle metadata on the drives themselves, a serverless system architecture is proposed. Skipping path component traversal during the lookup operation is the key technique discussed in this paper to avoid performance degradation with highly decentralized metadata. Scalability implications are reviewed based on a fuse file system implementation.