基于融合的模糊立体图像盲图像质量度量

A. Chetouani
{"title":"基于融合的模糊立体图像盲图像质量度量","authors":"A. Chetouani","doi":"10.1109/ATSIP.2017.8075530","DOIUrl":null,"url":null,"abstract":"Blur is certainly one of the most encountered and the most annoying degradation types in image. It is due to several causes such as compression, motion, filtering and so on. In order to estimate the quality of this kind of degraded images, several metrics have been proposed in the literature. In this paper, we focus our attention on stereoscopic images and we propose a fusion-based blind stereoscopic image quality metric for blur degradation. In order to characterize the considered degradation type, some relevant features are first computed. Note that these features are extracted from a cyclopean image (CI) derived from the stereoscopic image. The final index quality is given by combined all features through a Support Vector Machine (SVM) model used as a regression tool. The 3D LIVE and the IEEE image databases have been used to evaluate our method. The achieved performance has been compared to the state-of-the-art.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A fusion-based blind image quality metric for blurred stereoscopic images\",\"authors\":\"A. Chetouani\",\"doi\":\"10.1109/ATSIP.2017.8075530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blur is certainly one of the most encountered and the most annoying degradation types in image. It is due to several causes such as compression, motion, filtering and so on. In order to estimate the quality of this kind of degraded images, several metrics have been proposed in the literature. In this paper, we focus our attention on stereoscopic images and we propose a fusion-based blind stereoscopic image quality metric for blur degradation. In order to characterize the considered degradation type, some relevant features are first computed. Note that these features are extracted from a cyclopean image (CI) derived from the stereoscopic image. The final index quality is given by combined all features through a Support Vector Machine (SVM) model used as a regression tool. The 3D LIVE and the IEEE image databases have been used to evaluate our method. The achieved performance has been compared to the state-of-the-art.\",\"PeriodicalId\":259951,\"journal\":{\"name\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2017.8075530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

模糊无疑是图像中最常见和最令人讨厌的退化类型之一。这是由于压缩、运动、滤波等几种原因造成的。为了估计这类退化图像的质量,文献中提出了几个度量。本文以立体图像为研究对象,提出了一种基于融合的盲立体图像质量指标。为了表征所考虑的退化类型,首先计算一些相关特征。注意,这些特征是从从立体图像派生的单眼图像(CI)中提取的。通过支持向量机(SVM)模型作为回归工具,将所有特征组合在一起,得到最终的指标质量。使用3D LIVE和IEEE图像数据库对我们的方法进行了评估。所取得的成绩已被与最先进的技术相比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fusion-based blind image quality metric for blurred stereoscopic images
Blur is certainly one of the most encountered and the most annoying degradation types in image. It is due to several causes such as compression, motion, filtering and so on. In order to estimate the quality of this kind of degraded images, several metrics have been proposed in the literature. In this paper, we focus our attention on stereoscopic images and we propose a fusion-based blind stereoscopic image quality metric for blur degradation. In order to characterize the considered degradation type, some relevant features are first computed. Note that these features are extracted from a cyclopean image (CI) derived from the stereoscopic image. The final index quality is given by combined all features through a Support Vector Machine (SVM) model used as a regression tool. The 3D LIVE and the IEEE image databases have been used to evaluate our method. The achieved performance has been compared to the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speckle noise reduction in digital speckle pattern interferometry using Riesz wavelets transform A new GLBSIF descriptor for face recognition in the uncontrolled environments Saliency attention and sift keypoints combination for automatic target recognition on MSTAR dataset A comparative study of interworking methods among differents rats in 5G context Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1