应激条件下的说话人识别

Esther Rituerto-González, A. Gallardo-Antolín, Carmen Peláez-Moreno
{"title":"应激条件下的说话人识别","authors":"Esther Rituerto-González, A. Gallardo-Antolín, Carmen Peláez-Moreno","doi":"10.21437/IBERSPEECH.2018-4","DOIUrl":null,"url":null,"abstract":"Speaker Recognition systems exhibit a decrease in performance when the input speech is not in optimal circumstances, for example when the user is under emotional or stress conditions. The objective of this paper is measuring the effects of stress on speech to ultimately try to mitigate its consequences on a speaker recognition task. On this paper, we develop a stress-robust speaker identification system using data selection and augmentation by means of the manipulation of the original speech utterances. An extensive experimentation has been carried out for assessing the effectiveness of the proposed techniques. First, we concluded that the best performance is always obtained when naturally stressed samples are included in the training set, and second, when these are not available, their substitution and augmentation with synthetically generated stress-like samples, improves the performance of the system.","PeriodicalId":115963,"journal":{"name":"IberSPEECH Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Speaker Recognition under Stress Conditions\",\"authors\":\"Esther Rituerto-González, A. Gallardo-Antolín, Carmen Peláez-Moreno\",\"doi\":\"10.21437/IBERSPEECH.2018-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speaker Recognition systems exhibit a decrease in performance when the input speech is not in optimal circumstances, for example when the user is under emotional or stress conditions. The objective of this paper is measuring the effects of stress on speech to ultimately try to mitigate its consequences on a speaker recognition task. On this paper, we develop a stress-robust speaker identification system using data selection and augmentation by means of the manipulation of the original speech utterances. An extensive experimentation has been carried out for assessing the effectiveness of the proposed techniques. First, we concluded that the best performance is always obtained when naturally stressed samples are included in the training set, and second, when these are not available, their substitution and augmentation with synthetically generated stress-like samples, improves the performance of the system.\",\"PeriodicalId\":115963,\"journal\":{\"name\":\"IberSPEECH Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IberSPEECH Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/IBERSPEECH.2018-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IberSPEECH Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/IBERSPEECH.2018-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

说话人识别系统在输入语音不处于最佳状态时表现出性能下降,例如当用户处于情绪或压力状态时。本文的目的是测量压力对语音的影响,最终试图减轻其对说话人识别任务的影响。在本文中,我们开发了一个应力鲁棒的说话人识别系统,该系统使用数据选择和增强,通过对原始语音的处理。为了评估所建议的技术的有效性,已经进行了广泛的实验。首先,我们得出结论,当训练集中包含自然应力样本时,总是获得最佳性能;其次,当这些样本不可用时,用合成的类应力样本替换和增强它们,可以提高系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speaker Recognition under Stress Conditions
Speaker Recognition systems exhibit a decrease in performance when the input speech is not in optimal circumstances, for example when the user is under emotional or stress conditions. The objective of this paper is measuring the effects of stress on speech to ultimately try to mitigate its consequences on a speaker recognition task. On this paper, we develop a stress-robust speaker identification system using data selection and augmentation by means of the manipulation of the original speech utterances. An extensive experimentation has been carried out for assessing the effectiveness of the proposed techniques. First, we concluded that the best performance is always obtained when naturally stressed samples are included in the training set, and second, when these are not available, their substitution and augmentation with synthetically generated stress-like samples, improves the performance of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Recurrent Neural Network Approach to Audio Segmentation for Broadcast Domain Data The Intelligent Voice System for the IberSPEECH-RTVE 2018 Speaker Diarization Challenge AUDIAS-CEU: A Language-independent approach for the Query-by-Example Spoken Term Detection task of the Search on Speech ALBAYZIN 2018 evaluation The GTM-UVIGO System for Audiovisual Diarization Baseline Acoustic Models for Brazilian Portuguese Using Kaldi Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1