利用马氏距离研究先进的考虑方差的机器

Junheong Park, K. Sim, Seung-Min Park
{"title":"利用马氏距离研究先进的考虑方差的机器","authors":"Junheong Park, K. Sim, Seung-Min Park","doi":"10.1109/ICNC.2011.6022100","DOIUrl":null,"url":null,"abstract":"Support Vector Machine maximizes a margin between two groups. Variance-considered machine improves SVM to align hyper plane according to two classes' variance and prior probability to reduce the error rate. There is probabilistically imprecise things those data classified by VCM. In this paper, we introduce the VCM and try to propose a concept that is to confer reliability estimated by Mahalanobis distance upon data separated by VCM.","PeriodicalId":299503,"journal":{"name":"2011 Seventh International Conference on Natural Computation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notice of RetractionStudy on advanced variance-considered machines using Mahalanobis distance\",\"authors\":\"Junheong Park, K. Sim, Seung-Min Park\",\"doi\":\"10.1109/ICNC.2011.6022100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support Vector Machine maximizes a margin between two groups. Variance-considered machine improves SVM to align hyper plane according to two classes' variance and prior probability to reduce the error rate. There is probabilistically imprecise things those data classified by VCM. In this paper, we introduce the VCM and try to propose a concept that is to confer reliability estimated by Mahalanobis distance upon data separated by VCM.\",\"PeriodicalId\":299503,\"journal\":{\"name\":\"2011 Seventh International Conference on Natural Computation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Seventh International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2011.6022100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6022100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

支持向量机最大化两组之间的差额。方差考虑机改进支持向量机,根据两类的方差和先验概率对超平面进行对齐,以降低错误率。用VCM分类的数据可能不太精确。在本文中,我们引入了VCM,并尝试提出了一个概念,即对由VCM分离的数据赋予由马氏距离估计的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Notice of RetractionStudy on advanced variance-considered machines using Mahalanobis distance
Support Vector Machine maximizes a margin between two groups. Variance-considered machine improves SVM to align hyper plane according to two classes' variance and prior probability to reduce the error rate. There is probabilistically imprecise things those data classified by VCM. In this paper, we introduce the VCM and try to propose a concept that is to confer reliability estimated by Mahalanobis distance upon data separated by VCM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Notice of RetractionResearch on semi-active control of high-speed railway vehicle based on neural network-PID control Bethe approximation to inverse halftoning using multiple halftone images Hybrid crossover operator based on pattern MVN_CNN and UBN_CNN for endocardial edge detection A novel GPLS-GP algorithm and its application to air temperature prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1