研究了SiC BJT升压变换器的电磁干扰及其与输出电压、电流和散热器连接的关系

K. Kostov, J. Rąbkowski, H. Nee
{"title":"研究了SiC BJT升压变换器的电磁干扰及其与输出电压、电流和散热器连接的关系","authors":"K. Kostov, J. Rąbkowski, H. Nee","doi":"10.1109/ECCE-ASIA.2013.6579249","DOIUrl":null,"url":null,"abstract":"In comparison to their Silicon (Si) counterparts, the Silicon Carbide (SiC) power transistors have lower on-state resistance and higher switching speed, power and temperature ratings. These advantages make it possible to build smaller, lighter and more efficient power converters. Unfortunately, all these benefits come at the price of higher conducted and radiated electromagnetic interference (EMI). This paper investigates the conducted disturbances from a 6 kW boost converter with SiC bipolar junction transistors (BJTs). The results show that the conducted emissions at the input of the converter are approximately proportional to the output voltage, but almost independent on the load current. The effect of the heatsink on the conducted EMI was studied as well. It was found that using separate heatsinks for the diode and the BJT did not affect the level of conducted emissions significantly, but the way of connecting the heatsink does. A floating heatsink is bad from an EMI point of view, and in many cases it may not be allowed for safety reasons. When the heatsink is grounded, alone or together with the negative terminal, the common-mode noise increases the EMI measured at the positive line and decreases the EMI on the negative line. However, this appears only in the lower frequency range. At higher frequencies, connecting the heatsink in any way is better than letting it float. Therefore, the best option is to connect the heatsink to the negative line of the boost converter, and if grounding is required, it may be grounded as well. This may not be possible in systems where the negative voltage bus is at non-zero potential.","PeriodicalId":301487,"journal":{"name":"2013 IEEE ECCE Asia Downunder","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Conducted EMI from SiC BJT boost converter and its dependence on the output voltage, current, and heatsink connection\",\"authors\":\"K. Kostov, J. Rąbkowski, H. Nee\",\"doi\":\"10.1109/ECCE-ASIA.2013.6579249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In comparison to their Silicon (Si) counterparts, the Silicon Carbide (SiC) power transistors have lower on-state resistance and higher switching speed, power and temperature ratings. These advantages make it possible to build smaller, lighter and more efficient power converters. Unfortunately, all these benefits come at the price of higher conducted and radiated electromagnetic interference (EMI). This paper investigates the conducted disturbances from a 6 kW boost converter with SiC bipolar junction transistors (BJTs). The results show that the conducted emissions at the input of the converter are approximately proportional to the output voltage, but almost independent on the load current. The effect of the heatsink on the conducted EMI was studied as well. It was found that using separate heatsinks for the diode and the BJT did not affect the level of conducted emissions significantly, but the way of connecting the heatsink does. A floating heatsink is bad from an EMI point of view, and in many cases it may not be allowed for safety reasons. When the heatsink is grounded, alone or together with the negative terminal, the common-mode noise increases the EMI measured at the positive line and decreases the EMI on the negative line. However, this appears only in the lower frequency range. At higher frequencies, connecting the heatsink in any way is better than letting it float. Therefore, the best option is to connect the heatsink to the negative line of the boost converter, and if grounding is required, it may be grounded as well. This may not be possible in systems where the negative voltage bus is at non-zero potential.\",\"PeriodicalId\":301487,\"journal\":{\"name\":\"2013 IEEE ECCE Asia Downunder\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE ECCE Asia Downunder\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE-ASIA.2013.6579249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE ECCE Asia Downunder","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE-ASIA.2013.6579249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

与硅(Si)相比,碳化硅(SiC)功率晶体管具有更低的导通电阻和更高的开关速度、功率和温度额定值。这些优点使得制造更小、更轻、更高效的电源转换器成为可能。不幸的是,所有这些好处的代价是更高的传导和辐射电磁干扰(EMI)。本文研究了SiC双极结晶体管(BJTs)的6kw升压变换器的传导扰动。结果表明,变换器输入端的传导辐射与输出电压近似成正比,而与负载电流几乎无关。研究了散热器对传导电磁干扰的影响。人们发现,使用单独的散热器二极管和BJT没有影响传导辐射显著水平,但连接散热器的方式。从EMI的角度来看,浮动散热器是不好的,在许多情况下,出于安全原因,它可能不被允许。当散热器单独接地或与负端一起接地时,共模噪声会增大正端测得的电磁干扰,减小负端测得的电磁干扰。然而,这只出现在较低的频率范围内。在更高的频率下,以任何方式连接散热器都比让它漂浮要好。因此,最好的选择是将散热器连接到升压转换器的负线,如果需要接地,也可以接地。这在负电压母线处于非零电位的系统中是不可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conducted EMI from SiC BJT boost converter and its dependence on the output voltage, current, and heatsink connection
In comparison to their Silicon (Si) counterparts, the Silicon Carbide (SiC) power transistors have lower on-state resistance and higher switching speed, power and temperature ratings. These advantages make it possible to build smaller, lighter and more efficient power converters. Unfortunately, all these benefits come at the price of higher conducted and radiated electromagnetic interference (EMI). This paper investigates the conducted disturbances from a 6 kW boost converter with SiC bipolar junction transistors (BJTs). The results show that the conducted emissions at the input of the converter are approximately proportional to the output voltage, but almost independent on the load current. The effect of the heatsink on the conducted EMI was studied as well. It was found that using separate heatsinks for the diode and the BJT did not affect the level of conducted emissions significantly, but the way of connecting the heatsink does. A floating heatsink is bad from an EMI point of view, and in many cases it may not be allowed for safety reasons. When the heatsink is grounded, alone or together with the negative terminal, the common-mode noise increases the EMI measured at the positive line and decreases the EMI on the negative line. However, this appears only in the lower frequency range. At higher frequencies, connecting the heatsink in any way is better than letting it float. Therefore, the best option is to connect the heatsink to the negative line of the boost converter, and if grounding is required, it may be grounded as well. This may not be possible in systems where the negative voltage bus is at non-zero potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of a Switched Reluctance Motor using Grain-Oriented electric steel sheet Predictive current control based multi-pulse flexible-topology thyristor AC/DC converter and its application in wind energy conversion system Hybrid winding concept for toroids Dynamic performances of ballast for T5 fluorescent lamps Recent related technologies for EV/HEV applications in JAPAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1