R. A. Belaghi, Minoo Aminnejad, Ozlem Gurunlu Alma
{"title":"非参数模糊和参数GARCH方法的股票市场预测","authors":"R. A. Belaghi, Minoo Aminnejad, Ozlem Gurunlu Alma","doi":"10.34110/FORECASTING.420126","DOIUrl":null,"url":null,"abstract":"Prediction of stock market value is one the most complicated issue during the past decades. Due to its importance, in this research, we consider the prediction of stock values based on non-parametric and parametric methods. In this first method, we use the fuzzy Markov chain procedure in order to prediction problem. In this regard, all of the rising and falling probabilities during the weekdays are calculated and then they applied to obtain the increasing and decreasing rate. Then, based on this information we model and predict the stock values. In the sequel, we implement different methods of parametric time series such as generalized autoregressive conditionally heteroskedastic (GARCH), ARIMA-GARCH, Exponential GARCH (E-GARCH) and GJR-GARCH by assuming the normal and t-student distribution for the error terms to obtain the best model in terms of minimum mean square errors. Finally, the mythologies developed here are applied for the Tehran Stock Exchange Index (TEDPIX).","PeriodicalId":141932,"journal":{"name":"Turkish Journal of Forecasting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stock Market Prediction Using Nonparametric Fuzzy and Parametric GARCH Methods\",\"authors\":\"R. A. Belaghi, Minoo Aminnejad, Ozlem Gurunlu Alma\",\"doi\":\"10.34110/FORECASTING.420126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of stock market value is one the most complicated issue during the past decades. Due to its importance, in this research, we consider the prediction of stock values based on non-parametric and parametric methods. In this first method, we use the fuzzy Markov chain procedure in order to prediction problem. In this regard, all of the rising and falling probabilities during the weekdays are calculated and then they applied to obtain the increasing and decreasing rate. Then, based on this information we model and predict the stock values. In the sequel, we implement different methods of parametric time series such as generalized autoregressive conditionally heteroskedastic (GARCH), ARIMA-GARCH, Exponential GARCH (E-GARCH) and GJR-GARCH by assuming the normal and t-student distribution for the error terms to obtain the best model in terms of minimum mean square errors. Finally, the mythologies developed here are applied for the Tehran Stock Exchange Index (TEDPIX).\",\"PeriodicalId\":141932,\"journal\":{\"name\":\"Turkish Journal of Forecasting\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Forecasting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34110/FORECASTING.420126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34110/FORECASTING.420126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stock Market Prediction Using Nonparametric Fuzzy and Parametric GARCH Methods
Prediction of stock market value is one the most complicated issue during the past decades. Due to its importance, in this research, we consider the prediction of stock values based on non-parametric and parametric methods. In this first method, we use the fuzzy Markov chain procedure in order to prediction problem. In this regard, all of the rising and falling probabilities during the weekdays are calculated and then they applied to obtain the increasing and decreasing rate. Then, based on this information we model and predict the stock values. In the sequel, we implement different methods of parametric time series such as generalized autoregressive conditionally heteroskedastic (GARCH), ARIMA-GARCH, Exponential GARCH (E-GARCH) and GJR-GARCH by assuming the normal and t-student distribution for the error terms to obtain the best model in terms of minimum mean square errors. Finally, the mythologies developed here are applied for the Tehran Stock Exchange Index (TEDPIX).