无缝行人导航的自适应实时双模滤波器设计

Pekka Peltola, C. Hill, T. Moore
{"title":"无缝行人导航的自适应实时双模滤波器设计","authors":"Pekka Peltola, C. Hill, T. Moore","doi":"10.1109/ICL-GNSS.2017.8376257","DOIUrl":null,"url":null,"abstract":"Seamless navigation requires that the mobile device is capable of offering a position solution both indoors and outdoors. Novel seamless navigation system design was implemented and tested to achieve this aim. The design consists of general navigation system framework blocks and of the necessary interface agreements between the blocks. This approach enables plug-and-play style design of modules. The implementation used four preselected key technologies. Microstrain 3DM-GX4-45 foot-mounted inertial measurement unit sensor data was fused together with the u-blox GNSS receiver positions outdoors. Context sensitive inference engine enabled the fusion of position updates indoors from the De-cawave TREK1000 Ultra WideBand ranging kit and from the 6 Kontakt.io/Raspberry Pi anchor-based Bluetooth low energy fingeprinting system. Novel dual-mode filter design uses a particle filter and the pentagon buffer enhanced Kalman filter in the position solution derivation. Depending on the map and the walls in the environment and on the quality of position updates, the implemented control logic employs the most fit filter for the current context. Computational power is now focussed, when particle filter is needed. The novel pentagon buffer enhanced Kalman filter is 10 times faster, allowing power saving when situation is not too critical. Moreover, the buffer provides position updates by interacting with the map and helps to correct the position solution. The navigation system is seamless according to the tests conducted around and within the Nottingham Geospatial building. No user input is needed for smooth transition from outdoors to indoors and vice versa. The system achieves an accuracy of 2.35 m outdoors and 1.4 m indoors (95% of error). Inertial system availability was continuous, while GNSS was available outdoors and BLE and UWB indoors.","PeriodicalId":330366,"journal":{"name":"2017 International Conference on Localization and GNSS (ICL-GNSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adaptive real-time dual-mode filter design for seamless pedestrian navigation\",\"authors\":\"Pekka Peltola, C. Hill, T. Moore\",\"doi\":\"10.1109/ICL-GNSS.2017.8376257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seamless navigation requires that the mobile device is capable of offering a position solution both indoors and outdoors. Novel seamless navigation system design was implemented and tested to achieve this aim. The design consists of general navigation system framework blocks and of the necessary interface agreements between the blocks. This approach enables plug-and-play style design of modules. The implementation used four preselected key technologies. Microstrain 3DM-GX4-45 foot-mounted inertial measurement unit sensor data was fused together with the u-blox GNSS receiver positions outdoors. Context sensitive inference engine enabled the fusion of position updates indoors from the De-cawave TREK1000 Ultra WideBand ranging kit and from the 6 Kontakt.io/Raspberry Pi anchor-based Bluetooth low energy fingeprinting system. Novel dual-mode filter design uses a particle filter and the pentagon buffer enhanced Kalman filter in the position solution derivation. Depending on the map and the walls in the environment and on the quality of position updates, the implemented control logic employs the most fit filter for the current context. Computational power is now focussed, when particle filter is needed. The novel pentagon buffer enhanced Kalman filter is 10 times faster, allowing power saving when situation is not too critical. Moreover, the buffer provides position updates by interacting with the map and helps to correct the position solution. The navigation system is seamless according to the tests conducted around and within the Nottingham Geospatial building. No user input is needed for smooth transition from outdoors to indoors and vice versa. The system achieves an accuracy of 2.35 m outdoors and 1.4 m indoors (95% of error). Inertial system availability was continuous, while GNSS was available outdoors and BLE and UWB indoors.\",\"PeriodicalId\":330366,\"journal\":{\"name\":\"2017 International Conference on Localization and GNSS (ICL-GNSS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Localization and GNSS (ICL-GNSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICL-GNSS.2017.8376257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Localization and GNSS (ICL-GNSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICL-GNSS.2017.8376257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

无缝导航要求移动设备能够在室内和室外提供位置解决方案。为实现这一目标,设计了一种新型无缝导航系统并进行了测试。设计包括通用导航系统框架模块和模块之间必要的接口协议。这种方法支持即插即用风格的模块设计。该实现使用了四种预选的关键技术。将Microstrain 3DM-GX4-45英尺惯性测量单元传感器数据与u-blox GNSS接收器位置融合在一起。上下文敏感推理引擎能够融合来自De-cawave TREK1000超宽带测距套件和6 Kontakt的室内位置更新。基于树莓派锚定的蓝牙低功耗指纹识别系统。新的双模滤波器设计在位置解推导中采用粒子滤波器和五边形缓冲增强卡尔曼滤波器。根据环境中的地图和墙壁以及位置更新的质量,实现的控制逻辑采用最适合当前上下文的过滤器。当需要粒子滤波时,计算能力现在集中在一起。新颖的五边形缓冲器增强卡尔曼滤波器速度快10倍,允许在情况不太危急时节省电力。此外,缓冲区通过与地图交互提供位置更新,并帮助纠正位置解决方案。根据在诺丁汉地理空间大楼周围和内部进行的测试,导航系统是无缝的。从室外到室内的平滑过渡不需要用户输入,反之亦然。该系统的室外精度为2.35 m,室内精度为1.4 m(误差的95%)。惯性系统持续可用,室外GNSS可用,室内BLE和UWB可用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive real-time dual-mode filter design for seamless pedestrian navigation
Seamless navigation requires that the mobile device is capable of offering a position solution both indoors and outdoors. Novel seamless navigation system design was implemented and tested to achieve this aim. The design consists of general navigation system framework blocks and of the necessary interface agreements between the blocks. This approach enables plug-and-play style design of modules. The implementation used four preselected key technologies. Microstrain 3DM-GX4-45 foot-mounted inertial measurement unit sensor data was fused together with the u-blox GNSS receiver positions outdoors. Context sensitive inference engine enabled the fusion of position updates indoors from the De-cawave TREK1000 Ultra WideBand ranging kit and from the 6 Kontakt.io/Raspberry Pi anchor-based Bluetooth low energy fingeprinting system. Novel dual-mode filter design uses a particle filter and the pentagon buffer enhanced Kalman filter in the position solution derivation. Depending on the map and the walls in the environment and on the quality of position updates, the implemented control logic employs the most fit filter for the current context. Computational power is now focussed, when particle filter is needed. The novel pentagon buffer enhanced Kalman filter is 10 times faster, allowing power saving when situation is not too critical. Moreover, the buffer provides position updates by interacting with the map and helps to correct the position solution. The navigation system is seamless according to the tests conducted around and within the Nottingham Geospatial building. No user input is needed for smooth transition from outdoors to indoors and vice versa. The system achieves an accuracy of 2.35 m outdoors and 1.4 m indoors (95% of error). Inertial system availability was continuous, while GNSS was available outdoors and BLE and UWB indoors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of anchor nodes' usage for location verification systems Optimizing matched filters for GNSS receivers Trading-off location accuracy and service quality: Privacy concerns and user profiles Dealing with network changes in cellular fingerprint positioning systems High definition map-based vehicle localization for highly automated driving: Geometric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1