Oakleaf-FX上特征解算器的性能评价:三对角化与五对角化

Takeshi Fukaya, Toshiyuki Imamura
{"title":"Oakleaf-FX上特征解算器的性能评价:三对角化与五对角化","authors":"Takeshi Fukaya, Toshiyuki Imamura","doi":"10.1109/IPDPSW.2015.128","DOIUrl":null,"url":null,"abstract":"The solution of real symmetric dense Eigen value problems is one of the fundamental matrix computations. To date, several new high-performance Eigen solvers have been developed for peta and postpeta scale systems. One of these, the Eigen Exa Eigen solver, has been developed in Japan. Eigen Exa provides two routines: eigens, which is based on traditional tridiagonalization, and eigensx, which employs a new method via a pentadiagonal matrix. Recently, we conducted a detailed performance evaluation of Eigen Exa by using 4,800 nodes of the Oak leaf-FX supercomputer system. In this paper, we report the results of our evaluation, which is mainly focused on investigating the differences between the two routines. The results clearly indicate both the advantages and disadvantages of eigensx over eigens, which will contribute to further performance improvement of Eigen Exa. The obtained results are also expected to be useful for other parallel dense matrix computations, in addition to Eigen value problems.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"69 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Performance Evaluation of the Eigen Exa Eigensolver on Oakleaf-FX: Tridiagonalization Versus Pentadiagonalization\",\"authors\":\"Takeshi Fukaya, Toshiyuki Imamura\",\"doi\":\"10.1109/IPDPSW.2015.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solution of real symmetric dense Eigen value problems is one of the fundamental matrix computations. To date, several new high-performance Eigen solvers have been developed for peta and postpeta scale systems. One of these, the Eigen Exa Eigen solver, has been developed in Japan. Eigen Exa provides two routines: eigens, which is based on traditional tridiagonalization, and eigensx, which employs a new method via a pentadiagonal matrix. Recently, we conducted a detailed performance evaluation of Eigen Exa by using 4,800 nodes of the Oak leaf-FX supercomputer system. In this paper, we report the results of our evaluation, which is mainly focused on investigating the differences between the two routines. The results clearly indicate both the advantages and disadvantages of eigensx over eigens, which will contribute to further performance improvement of Eigen Exa. The obtained results are also expected to be useful for other parallel dense matrix computations, in addition to Eigen value problems.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"69 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

实对称密集特征值问题的求解是矩阵计算的基本问题之一。到目前为止,已经为peta和postpeta尺度系统开发了几种新的高性能特征解算器。其中之一是日本开发的Eigen Exa Eigen求解器。Eigen Exa提供了两个例程:基于传统三对角化的eigens和通过五对角矩阵采用新方法的eigensx。最近,我们利用Oak leaf-FX超级计算机系统的4800个节点,对Eigen Exa进行了详细的性能评估。在本文中,我们报告了我们的评估结果,主要集中在调查两个例程之间的差异。结果清楚地表明了eigensx相对于eigensx的优缺点,这将有助于进一步提高eigensx的性能。所得结果也有望用于除特征值问题外的其他并行密集矩阵计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Evaluation of the Eigen Exa Eigensolver on Oakleaf-FX: Tridiagonalization Versus Pentadiagonalization
The solution of real symmetric dense Eigen value problems is one of the fundamental matrix computations. To date, several new high-performance Eigen solvers have been developed for peta and postpeta scale systems. One of these, the Eigen Exa Eigen solver, has been developed in Japan. Eigen Exa provides two routines: eigens, which is based on traditional tridiagonalization, and eigensx, which employs a new method via a pentadiagonal matrix. Recently, we conducted a detailed performance evaluation of Eigen Exa by using 4,800 nodes of the Oak leaf-FX supercomputer system. In this paper, we report the results of our evaluation, which is mainly focused on investigating the differences between the two routines. The results clearly indicate both the advantages and disadvantages of eigensx over eigens, which will contribute to further performance improvement of Eigen Exa. The obtained results are also expected to be useful for other parallel dense matrix computations, in addition to Eigen value problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Large-Scale Single-Source Shortest Path on FPGA Relocation-Aware Floorplanning for Partially-Reconfigurable FPGA-Based Systems iWAPT Introduction and Committees Computing the Pseudo-Inverse of a Graph's Laplacian Using GPUs Optimizing Defensive Investments in Energy-Based Cyber-Physical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1