{"title":"Oakleaf-FX上特征解算器的性能评价:三对角化与五对角化","authors":"Takeshi Fukaya, Toshiyuki Imamura","doi":"10.1109/IPDPSW.2015.128","DOIUrl":null,"url":null,"abstract":"The solution of real symmetric dense Eigen value problems is one of the fundamental matrix computations. To date, several new high-performance Eigen solvers have been developed for peta and postpeta scale systems. One of these, the Eigen Exa Eigen solver, has been developed in Japan. Eigen Exa provides two routines: eigens, which is based on traditional tridiagonalization, and eigensx, which employs a new method via a pentadiagonal matrix. Recently, we conducted a detailed performance evaluation of Eigen Exa by using 4,800 nodes of the Oak leaf-FX supercomputer system. In this paper, we report the results of our evaluation, which is mainly focused on investigating the differences between the two routines. The results clearly indicate both the advantages and disadvantages of eigensx over eigens, which will contribute to further performance improvement of Eigen Exa. The obtained results are also expected to be useful for other parallel dense matrix computations, in addition to Eigen value problems.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"69 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Performance Evaluation of the Eigen Exa Eigensolver on Oakleaf-FX: Tridiagonalization Versus Pentadiagonalization\",\"authors\":\"Takeshi Fukaya, Toshiyuki Imamura\",\"doi\":\"10.1109/IPDPSW.2015.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solution of real symmetric dense Eigen value problems is one of the fundamental matrix computations. To date, several new high-performance Eigen solvers have been developed for peta and postpeta scale systems. One of these, the Eigen Exa Eigen solver, has been developed in Japan. Eigen Exa provides two routines: eigens, which is based on traditional tridiagonalization, and eigensx, which employs a new method via a pentadiagonal matrix. Recently, we conducted a detailed performance evaluation of Eigen Exa by using 4,800 nodes of the Oak leaf-FX supercomputer system. In this paper, we report the results of our evaluation, which is mainly focused on investigating the differences between the two routines. The results clearly indicate both the advantages and disadvantages of eigensx over eigens, which will contribute to further performance improvement of Eigen Exa. The obtained results are also expected to be useful for other parallel dense matrix computations, in addition to Eigen value problems.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"69 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Evaluation of the Eigen Exa Eigensolver on Oakleaf-FX: Tridiagonalization Versus Pentadiagonalization
The solution of real symmetric dense Eigen value problems is one of the fundamental matrix computations. To date, several new high-performance Eigen solvers have been developed for peta and postpeta scale systems. One of these, the Eigen Exa Eigen solver, has been developed in Japan. Eigen Exa provides two routines: eigens, which is based on traditional tridiagonalization, and eigensx, which employs a new method via a pentadiagonal matrix. Recently, we conducted a detailed performance evaluation of Eigen Exa by using 4,800 nodes of the Oak leaf-FX supercomputer system. In this paper, we report the results of our evaluation, which is mainly focused on investigating the differences between the two routines. The results clearly indicate both the advantages and disadvantages of eigensx over eigens, which will contribute to further performance improvement of Eigen Exa. The obtained results are also expected to be useful for other parallel dense matrix computations, in addition to Eigen value problems.