基于学习向量量化方法的NOAA卫星图像云分类

C. Ahendyarti, R. Wiryadinata, Neneng Rohana, Fadil Muhammad
{"title":"基于学习向量量化方法的NOAA卫星图像云分类","authors":"C. Ahendyarti, R. Wiryadinata, Neneng Rohana, Fadil Muhammad","doi":"10.1109/ICIEE49813.2020.9277269","DOIUrl":null,"url":null,"abstract":"Cloud images from NOAA satellites 18 and 19 are essential for weather forecasting and climate analysis. Imagery from satellites in the cloud’s shape can be distinguished based on the cloud (low, middle, and high). This paper uses the multilevel thresholding segmentation method compared with the FCM method (fuzzy c-mean clustering). The segmented data with the two methods are classified using the LVQ method. This study’s results obtained the accuracy of the cloud data recognition segmented using multilevel thresholding of 72.22% and cloud data segmented using FCM of 83.33%.","PeriodicalId":127106,"journal":{"name":"2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloud Classification from NOAA Satellite Image Using Learning Vector Quantization Method\",\"authors\":\"C. Ahendyarti, R. Wiryadinata, Neneng Rohana, Fadil Muhammad\",\"doi\":\"10.1109/ICIEE49813.2020.9277269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud images from NOAA satellites 18 and 19 are essential for weather forecasting and climate analysis. Imagery from satellites in the cloud’s shape can be distinguished based on the cloud (low, middle, and high). This paper uses the multilevel thresholding segmentation method compared with the FCM method (fuzzy c-mean clustering). The segmented data with the two methods are classified using the LVQ method. This study’s results obtained the accuracy of the cloud data recognition segmented using multilevel thresholding of 72.22% and cloud data segmented using FCM of 83.33%.\",\"PeriodicalId\":127106,\"journal\":{\"name\":\"2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEE49813.2020.9277269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEE49813.2020.9277269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

来自NOAA卫星18号和19号的云图对天气预报和气候分析至关重要。卫星拍摄的云的形状可以根据云的形状(低、中、高)来区分。本文采用多级阈值分割方法与FCM方法(模糊c均值聚类)进行比较。用LVQ方法对两种方法分割的数据进行分类。本研究结果获得了多级阈值分割的云数据识别准确率为72.22%,FCM分割的云数据识别准确率为83.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cloud Classification from NOAA Satellite Image Using Learning Vector Quantization Method
Cloud images from NOAA satellites 18 and 19 are essential for weather forecasting and climate analysis. Imagery from satellites in the cloud’s shape can be distinguished based on the cloud (low, middle, and high). This paper uses the multilevel thresholding segmentation method compared with the FCM method (fuzzy c-mean clustering). The segmented data with the two methods are classified using the LVQ method. This study’s results obtained the accuracy of the cloud data recognition segmented using multilevel thresholding of 72.22% and cloud data segmented using FCM of 83.33%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nutrient Film Technique for Automatic Hydroponic System Based on Arduino Performance Evaluation of Body Temperature Data Transmission Using Turbo Codes in 4G-LTE Design of Prototype Measuring Motor Vehicles Velocity Using Hall Effect Sensor Series A-1302 based On Arduino Mega2560 Design of a Microstrip Antenna Array Dual Band Using Stub Method Feasibility Study for Development of Micro Grid System in Rural Island
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1