基于动态聚类的无线传感器网络声目标跟踪

Wei-Peng Chen, J. Hou, L. Sha
{"title":"基于动态聚类的无线传感器网络声目标跟踪","authors":"Wei-Peng Chen, J. Hou, L. Sha","doi":"10.1109/ICNP.2003.1249778","DOIUrl":null,"url":null,"abstract":"In the paper, we devise and evaluate a fully decentralized, light-weight, dynamic clustering algorithm for target tracking. Instead of assuming the same role for all the sensors, we envision a hierarchical sensor network that is composed of (a) a static backbone of sparsely placed high-capability sensors which assume the role of a cluster head (CH) upon triggered by certain signal events; and (b) moderately to densely populated low-end sensors whose function is to provide sensor information to CHs upon request. A cluster is formed and a CH becomes active, when the acoustic signal strength detected by the CH exceeds a pre-determined threshold. The active CH then broadcasts an information solicitation packet, asking sensors in its vicinity to join the cluster and provide their sensing information. We address and devise solution approaches (with the use of Voronoi diagram) to realize dynamic clustering: (I1) how CHs cooperate with one another to ensure that for the most of time only one CH (preferably the CH that is closest to the target) is active; (I2) when the active CH solicits for sensor information, instead of having all the sensors in its vicinity reply, only a sufficient number of sensors respond with non-redundant, essential information to determine the target location; and (I3) both packets with which sensors respond to their CHs and packets that CHs report to subscribers do not incur significant collision. Through both probabilistic analysis and ns-2 simulation, we show with the use of Voronoi diagram, the CH that is usually closest to the target is (implicitly) selected as the leader and that the proposed dynamic clustering algorithm effectively eliminates contention among sensors and renders more accurate estimates of target locations as a result of better quality data collected and less collision incurred.","PeriodicalId":179873,"journal":{"name":"11th IEEE International Conference on Network Protocols, 2003. Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic clustering for acoustic target tracking in wireless sensor networks\",\"authors\":\"Wei-Peng Chen, J. Hou, L. Sha\",\"doi\":\"10.1109/ICNP.2003.1249778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we devise and evaluate a fully decentralized, light-weight, dynamic clustering algorithm for target tracking. Instead of assuming the same role for all the sensors, we envision a hierarchical sensor network that is composed of (a) a static backbone of sparsely placed high-capability sensors which assume the role of a cluster head (CH) upon triggered by certain signal events; and (b) moderately to densely populated low-end sensors whose function is to provide sensor information to CHs upon request. A cluster is formed and a CH becomes active, when the acoustic signal strength detected by the CH exceeds a pre-determined threshold. The active CH then broadcasts an information solicitation packet, asking sensors in its vicinity to join the cluster and provide their sensing information. We address and devise solution approaches (with the use of Voronoi diagram) to realize dynamic clustering: (I1) how CHs cooperate with one another to ensure that for the most of time only one CH (preferably the CH that is closest to the target) is active; (I2) when the active CH solicits for sensor information, instead of having all the sensors in its vicinity reply, only a sufficient number of sensors respond with non-redundant, essential information to determine the target location; and (I3) both packets with which sensors respond to their CHs and packets that CHs report to subscribers do not incur significant collision. Through both probabilistic analysis and ns-2 simulation, we show with the use of Voronoi diagram, the CH that is usually closest to the target is (implicitly) selected as the leader and that the proposed dynamic clustering algorithm effectively eliminates contention among sensors and renders more accurate estimates of target locations as a result of better quality data collected and less collision incurred.\",\"PeriodicalId\":179873,\"journal\":{\"name\":\"11th IEEE International Conference on Network Protocols, 2003. Proceedings.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th IEEE International Conference on Network Protocols, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP.2003.1249778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th IEEE International Conference on Network Protocols, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP.2003.1249778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们设计并评估了一种完全分散的、轻量级的、动态的目标跟踪聚类算法。我们设想的分层传感器网络不是为所有传感器承担相同的角色,而是由以下组成:(a)由稀疏放置的高性能传感器组成的静态骨干,在某些信号事件触发时承担簇头(CH)的角色;(b)中等至密集的低端传感器,其功能是应要求向CHs提供传感器信息。当CH检测到的声信号强度超过预先确定的阈值时,就会形成一个簇,并且CH变得活跃。然后活动CH广播一个信息请求包,要求其附近的传感器加入集群并提供它们的感知信息。我们提出并设计了解决方案(使用Voronoi图)来实现动态聚类:(1)CHs如何相互合作以确保在大多数时间内只有一个CH(最好是最接近目标的CH)是活动的;(I2)当主动CH请求传感器信息时,不是让其附近的所有传感器响应,而是只有足够数量的传感器响应,提供非冗余的基本信息,以确定目标位置;以及(I3)传感器响应其CHs的两个数据包和CHs向订阅者报告的数据包不会引起重大碰撞。通过概率分析和ns-2仿真,我们使用Voronoi图表明,通常最接近目标的CH被(隐式)选择为领导者,并且所提出的动态聚类算法有效地消除了传感器之间的争用,并且由于收集到的数据质量更好,发生的碰撞更少,因此可以更准确地估计目标位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic clustering for acoustic target tracking in wireless sensor networks
In the paper, we devise and evaluate a fully decentralized, light-weight, dynamic clustering algorithm for target tracking. Instead of assuming the same role for all the sensors, we envision a hierarchical sensor network that is composed of (a) a static backbone of sparsely placed high-capability sensors which assume the role of a cluster head (CH) upon triggered by certain signal events; and (b) moderately to densely populated low-end sensors whose function is to provide sensor information to CHs upon request. A cluster is formed and a CH becomes active, when the acoustic signal strength detected by the CH exceeds a pre-determined threshold. The active CH then broadcasts an information solicitation packet, asking sensors in its vicinity to join the cluster and provide their sensing information. We address and devise solution approaches (with the use of Voronoi diagram) to realize dynamic clustering: (I1) how CHs cooperate with one another to ensure that for the most of time only one CH (preferably the CH that is closest to the target) is active; (I2) when the active CH solicits for sensor information, instead of having all the sensors in its vicinity reply, only a sufficient number of sensors respond with non-redundant, essential information to determine the target location; and (I3) both packets with which sensors respond to their CHs and packets that CHs report to subscribers do not incur significant collision. Through both probabilistic analysis and ns-2 simulation, we show with the use of Voronoi diagram, the CH that is usually closest to the target is (implicitly) selected as the leader and that the proposed dynamic clustering algorithm effectively eliminates contention among sensors and renders more accurate estimates of target locations as a result of better quality data collected and less collision incurred.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving TCP startup performance using active measurements: algorithm and evaluation Establishing pairwise keys for secure communication in ad hoc networks: a probabilistic approach A bidding protocol for deploying mobile sensors Delay analysis of IEEE 802.11 in single-hop networks A file-centric model for peer-to-peer file sharing systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1